Search for blocks/addresses/...

Proofgold Asset

asset id
d49d9ef3817227aff42d95e34952b87e779fccb1663ed14a836d7ee61d36142f
asset hash
ebc42983b4347646e4dc22a6ea71289945a4fd46aa54fd9b061f87a14e3fc36a
bday / block
36388
tx
2e131..
preasset
doc published by PrCmT..
Known df_sx__df_meas__df_dde__df_ae__df_fae__df_mbfm__df_oms__df_carsg__df_sitg__df_sitm__df_itgm__df_sseq__df_fib__df_prob__df_cndprob__df_rrv__df_orvc__df_repr : ∀ x0 : ο . (wceq csx (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . cfv (crn (cmpt2 (λ x3 x4 . cv x1) (λ x3 x4 . cv x2) (λ x3 x4 . cxp (cv x3) (cv x4)))) csigagen))wceq cmeas (cmpt (λ x1 . cuni (crn csiga)) (λ x1 . cab (λ x2 . w3a (wf (cv x1) (co cc0 cpnf cicc) (cv x2)) (wceq (cfv c0 (cv x2)) cc0) (wral (λ x3 . wa (wbr (cv x3) com cdom) (wdisj (λ x4 . cv x3) cv)wceq (cfv (cuni (cv x3)) (cv x2)) (cesum (λ x4 . cv x3) (λ x4 . cfv (cv x4) (cv x2)))) (λ x3 . cpw (cv x1))))))wceq cdde (cmpt (λ x1 . cpw cr) (λ x1 . cif (wcel cc0 (cv x1)) c1 cc0))wceq cae (copab (λ x1 x2 . wceq (cfv (cdif (cuni (cdm (cv x2))) (cv x1)) (cv x2)) cc0))wceq cfae (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cuni (crn cmeas)) (λ x1 x2 . copab (λ x3 x4 . wa (wa (wcel (cv x3) (co (cdm (cv x1)) (cuni (cdm (cv x2))) cmap)) (wcel (cv x4) (co (cdm (cv x1)) (cuni (cdm (cv x2))) cmap))) (wbr (crab (λ x5 . wbr (cfv (cv x5) (cv x3)) (cfv (cv x5) (cv x4)) (cv x1)) (λ x5 . cuni (cdm (cv x2)))) (cv x2) cae))))wceq cmbfm (cmpt2 (λ x1 x2 . cuni (crn csiga)) (λ x1 x2 . cuni (crn csiga)) (λ x1 x2 . crab (λ x3 . wral (λ x4 . wcel (cima (ccnv (cv x3)) (cv x4)) (cv x1)) (λ x4 . cv x2)) (λ x3 . co (cuni (cv x2)) (cuni (cv x1)) cmap)))wceq coms (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cpw (cuni (cdm (cv x1)))) (λ x2 . cinf (crn (cmpt (λ x3 . crab (λ x4 . wa (wss (cv x2) (cuni (cv x4))) (wbr (cv x4) com cdom)) (λ x4 . cpw (cdm (cv x1)))) (λ x3 . cesum (λ x4 . cv x3) (λ x4 . cfv (cv x4) (cv x1))))) (co cc0 cpnf cicc) clt)))wceq ccarsg (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wral (λ x3 . wceq (co (cfv (cin (cv x3) (cv x2)) (cv x1)) (cfv (cdif (cv x3) (cv x2)) (cv x1)) cxad) (cfv (cv x3) (cv x1))) (λ x3 . cpw (cuni (cdm (cv x1))))) (λ x2 . cpw (cuni (cdm (cv x1))))))wceq csitg (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cuni (crn cmeas)) (λ x1 x2 . cmpt (λ x3 . crab (λ x4 . wa (wcel (crn (cv x4)) cfn) (wral (λ x5 . wcel (cfv (cima (ccnv (cv x4)) (csn (cv x5))) (cv x2)) (co cc0 cpnf cico)) (λ x5 . cdif (crn (cv x4)) (csn (cfv (cv x1) c0g))))) (λ x4 . co (cdm (cv x2)) (cfv (cfv (cv x1) ctopn) csigagen) cmbfm)) (λ x3 . co (cv x1) (cmpt (λ x4 . cdif (crn (cv x3)) (csn (cfv (cv x1) c0g))) (λ x4 . co (cfv (cfv (cima (ccnv (cv x3)) (csn (cv x4))) (cv x2)) (cfv (cfv (cv x1) csca) crrh)) (cv x4) (cfv (cv x1) cvsca))) cgsu)))wceq csitm (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cuni (crn cmeas)) (λ x1 x2 . cmpt2 (λ x3 x4 . cdm (co (cv x1) (cv x2) csitg)) (λ x3 x4 . cdm (co (cv x1) (cv x2) csitg)) (λ x3 x4 . cfv (co (cv x3) (cv x4) (cof (cfv (cv x1) cds))) (co (co cxrs (co cc0 cpnf cicc) cress) (cv x2) csitg))))wceq citgm (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cuni (crn cmeas)) (λ x1 x2 . cfv (co (cv x1) (cv x2) csitg) (co (cfv (co (cv x1) (cv x2) csitm) cmetu) (cfv (cv x1) cuss) ccnext)))wceq csseq (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . cun (cv x1) (ccom clsw (cseq (cmpt2 (λ x3 x4 . cvv) (λ x3 x4 . cvv) (λ x3 x4 . co (cv x3) (cs1 (cfv (cv x3) (cv x2))) cconcat)) (cxp cn0 (csn (co (cv x1) (cs1 (cfv (cv x1) (cv x2))) cconcat))) (cfv (cv x1) chash)))))wceq cfib (co (cs2 cc0 c1) (cmpt (λ x1 . cin (cword cn0) (cima (ccnv chash) (cfv c2 cuz))) (λ x1 . co (cfv (co (cfv (cv x1) chash) c2 cmin) (cv x1)) (cfv (co (cfv (cv x1) chash) c1 cmin) (cv x1)) caddc)) csseq)wceq cprb (crab (λ x1 . wceq (cfv (cuni (cdm (cv x1))) (cv x1)) c1) (λ x1 . cuni (crn cmeas)))wceq ccprob (cmpt (λ x1 . cprb) (λ x1 . cmpt2 (λ x2 x3 . cdm (cv x1)) (λ x2 x3 . cdm (cv x1)) (λ x2 x3 . co (cfv (cin (cv x2) (cv x3)) (cv x1)) (cfv (cv x3) (cv x1)) cdiv)))wceq crrv (cmpt (λ x1 . cprb) (λ x1 . co (cdm (cv x1)) cbrsiga cmbfm))(∀ x1 : ι → ο . wceq (corvc x1) (cmpt2 (λ x2 x3 . cab (λ x4 . wfun (cv x4))) (λ x2 x3 . cvv) (λ x2 x3 . cima (ccnv (cv x2)) (cab (λ x4 . wbr (cv x4) (cv x3) x1)))))wceq crepr (cmpt (λ x1 . cn0) (λ x1 . cmpt2 (λ x2 x3 . cpw cn) (λ x2 x3 . cz) (λ x2 x3 . crab (λ x4 . wceq (csu (co cc0 (cv x1) cfzo) (λ x5 . cfv (cv x5) (cv x4))) (cv x3)) (λ x4 . co (cv x2) (co cc0 (cv x1) cfzo) cmap))))x0)x0
Theorem df_sx : wceq csx (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cvv) (λ x0 x1 . cfv (crn (cmpt2 (λ x2 x3 . cv x0) (λ x2 x3 . cv x1) (λ x2 x3 . cxp (cv x2) (cv x3)))) csigagen)) (proof)
Theorem df_meas : wceq cmeas (cmpt (λ x0 . cuni (crn csiga)) (λ x0 . cab (λ x1 . w3a (wf (cv x0) (co cc0 cpnf cicc) (cv x1)) (wceq (cfv c0 (cv x1)) cc0) (wral (λ x2 . wa (wbr (cv x2) com cdom) (wdisj (λ x3 . cv x2) cv)wceq (cfv (cuni (cv x2)) (cv x1)) (cesum (λ x3 . cv x2) (λ x3 . cfv (cv x3) (cv x1)))) (λ x2 . cpw (cv x0)))))) (proof)
Theorem df_dde : wceq cdde (cmpt (λ x0 . cpw cr) (λ x0 . cif (wcel cc0 (cv x0)) c1 cc0)) (proof)
Theorem df_ae : wceq cae (copab (λ x0 x1 . wceq (cfv (cdif (cuni (cdm (cv x1))) (cv x0)) (cv x1)) cc0)) (proof)
Theorem df_fae : wceq cfae (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cuni (crn cmeas)) (λ x0 x1 . copab (λ x2 x3 . wa (wa (wcel (cv x2) (co (cdm (cv x0)) (cuni (cdm (cv x1))) cmap)) (wcel (cv x3) (co (cdm (cv x0)) (cuni (cdm (cv x1))) cmap))) (wbr (crab (λ x4 . wbr (cfv (cv x4) (cv x2)) (cfv (cv x4) (cv x3)) (cv x0)) (λ x4 . cuni (cdm (cv x1)))) (cv x1) cae)))) (proof)
Theorem df_mbfm : wceq cmbfm (cmpt2 (λ x0 x1 . cuni (crn csiga)) (λ x0 x1 . cuni (crn csiga)) (λ x0 x1 . crab (λ x2 . wral (λ x3 . wcel (cima (ccnv (cv x2)) (cv x3)) (cv x0)) (λ x3 . cv x1)) (λ x2 . co (cuni (cv x1)) (cuni (cv x0)) cmap))) (proof)
Theorem df_oms : wceq coms (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cpw (cuni (cdm (cv x0)))) (λ x1 . cinf (crn (cmpt (λ x2 . crab (λ x3 . wa (wss (cv x1) (cuni (cv x3))) (wbr (cv x3) com cdom)) (λ x3 . cpw (cdm (cv x0)))) (λ x2 . cesum (λ x3 . cv x2) (λ x3 . cfv (cv x3) (cv x0))))) (co cc0 cpnf cicc) clt))) (proof)
Theorem df_carsg : wceq ccarsg (cmpt (λ x0 . cvv) (λ x0 . crab (λ x1 . wral (λ x2 . wceq (co (cfv (cin (cv x2) (cv x1)) (cv x0)) (cfv (cdif (cv x2) (cv x1)) (cv x0)) cxad) (cfv (cv x2) (cv x0))) (λ x2 . cpw (cuni (cdm (cv x0))))) (λ x1 . cpw (cuni (cdm (cv x0)))))) (proof)
Theorem df_sitg : wceq csitg (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cuni (crn cmeas)) (λ x0 x1 . cmpt (λ x2 . crab (λ x3 . wa (wcel (crn (cv x3)) cfn) (wral (λ x4 . wcel (cfv (cima (ccnv (cv x3)) (csn (cv x4))) (cv x1)) (co cc0 cpnf cico)) (λ x4 . cdif (crn (cv x3)) (csn (cfv (cv x0) c0g))))) (λ x3 . co (cdm (cv x1)) (cfv (cfv (cv x0) ctopn) csigagen) cmbfm)) (λ x2 . co (cv x0) (cmpt (λ x3 . cdif (crn (cv x2)) (csn (cfv (cv x0) c0g))) (λ x3 . co (cfv (cfv (cima (ccnv (cv x2)) (csn (cv x3))) (cv x1)) (cfv (cfv (cv x0) csca) crrh)) (cv x3) (cfv (cv x0) cvsca))) cgsu))) (proof)
Theorem df_sitm : wceq csitm (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cuni (crn cmeas)) (λ x0 x1 . cmpt2 (λ x2 x3 . cdm (co (cv x0) (cv x1) csitg)) (λ x2 x3 . cdm (co (cv x0) (cv x1) csitg)) (λ x2 x3 . cfv (co (cv x2) (cv x3) (cof (cfv (cv x0) cds))) (co (co cxrs (co cc0 cpnf cicc) cress) (cv x1) csitg)))) (proof)
Theorem df_itgm : wceq citgm (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cuni (crn cmeas)) (λ x0 x1 . cfv (co (cv x0) (cv x1) csitg) (co (cfv (co (cv x0) (cv x1) csitm) cmetu) (cfv (cv x0) cuss) ccnext))) (proof)
Theorem df_sseq : wceq csseq (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cvv) (λ x0 x1 . cun (cv x0) (ccom clsw (cseq (cmpt2 (λ x2 x3 . cvv) (λ x2 x3 . cvv) (λ x2 x3 . co (cv x2) (cs1 (cfv (cv x2) (cv x1))) cconcat)) (cxp cn0 (csn (co (cv x0) (cs1 (cfv (cv x0) (cv x1))) cconcat))) (cfv (cv x0) chash))))) (proof)
Theorem df_fib : wceq cfib (co (cs2 cc0 c1) (cmpt (λ x0 . cin (cword cn0) (cima (ccnv chash) (cfv c2 cuz))) (λ x0 . co (cfv (co (cfv (cv x0) chash) c2 cmin) (cv x0)) (cfv (co (cfv (cv x0) chash) c1 cmin) (cv x0)) caddc)) csseq) (proof)
Theorem df_prob : wceq cprb (crab (λ x0 . wceq (cfv (cuni (cdm (cv x0))) (cv x0)) c1) (λ x0 . cuni (crn cmeas))) (proof)
Theorem df_cndprob : wceq ccprob (cmpt (λ x0 . cprb) (λ x0 . cmpt2 (λ x1 x2 . cdm (cv x0)) (λ x1 x2 . cdm (cv x0)) (λ x1 x2 . co (cfv (cin (cv x1) (cv x2)) (cv x0)) (cfv (cv x2) (cv x0)) cdiv))) (proof)
Theorem df_rrv : wceq crrv (cmpt (λ x0 . cprb) (λ x0 . co (cdm (cv x0)) cbrsiga cmbfm)) (proof)
Theorem df_orvc : ∀ x0 : ι → ο . wceq (corvc x0) (cmpt2 (λ x1 x2 . cab (λ x3 . wfun (cv x3))) (λ x1 x2 . cvv) (λ x1 x2 . cima (ccnv (cv x1)) (cab (λ x3 . wbr (cv x3) (cv x2) x0)))) (proof)
Theorem df_repr : wceq crepr (cmpt (λ x0 . cn0) (λ x0 . cmpt2 (λ x1 x2 . cpw cn) (λ x1 x2 . cz) (λ x1 x2 . crab (λ x3 . wceq (csu (co cc0 (cv x0) cfzo) (λ x4 . cfv (cv x4) (cv x3))) (cv x2)) (λ x3 . co (cv x1) (co cc0 (cv x0) cfzo) cmap)))) (proof)