Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrDjJ..
/
4b405..
PUVTK..
/
8505c..
vout
PrDjJ..
/
dfff9..
0.10 bars
TMGu9..
/
665d4..
ownership of
0e43b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMM9L..
/
553b0..
ownership of
cb6e5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdG4..
/
5b209..
ownership of
330b9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPw8..
/
077f1..
ownership of
97cb5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSAz..
/
de59e..
ownership of
93d62..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHn9..
/
45518..
ownership of
8acbb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQPv..
/
b8ae3..
ownership of
cb86b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXfm..
/
0a129..
ownership of
14304..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXSL..
/
cad9a..
ownership of
f15f3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUT2..
/
d0baf..
ownership of
88829..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRsz..
/
c3faa..
ownership of
43b88..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKPy..
/
434de..
ownership of
f5f8c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZA4..
/
365d0..
ownership of
fac8b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXmZ..
/
7ff11..
ownership of
005b3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMb2f..
/
e0390..
ownership of
3ebfe..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKgb..
/
97e70..
ownership of
c495e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMGE..
/
32c1b..
ownership of
05987..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMH3H..
/
d97e0..
ownership of
3d3eb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRWa..
/
13ae8..
ownership of
ae4af..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFR7..
/
87dfc..
ownership of
26423..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNqb..
/
a92ff..
ownership of
9a17f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLrx..
/
1fc89..
ownership of
a2163..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYMc..
/
fb429..
ownership of
f9c9f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMc9Z..
/
35b4c..
ownership of
9488b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGL2..
/
c11b4..
ownership of
1fe28..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcx7..
/
132d9..
ownership of
b54dd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcbJ..
/
395a4..
ownership of
81ff0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTbU..
/
312ba..
ownership of
0bae4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMde..
/
67020..
ownership of
b6979..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMX5K..
/
5ed85..
ownership of
ac0c6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFVi..
/
39837..
ownership of
25719..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMF49..
/
e22a0..
ownership of
00cbb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTMD..
/
6fffd..
ownership of
b345a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYzq..
/
1b2af..
ownership of
2afb1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGGC..
/
77abf..
ownership of
7c140..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQC1..
/
24751..
ownership of
34173..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PURJe..
/
d49d9..
doc published by
PrCmT..
Known
df_sx__df_meas__df_dde__df_ae__df_fae__df_mbfm__df_oms__df_carsg__df_sitg__df_sitm__df_itgm__df_sseq__df_fib__df_prob__df_cndprob__df_rrv__df_orvc__df_repr
:
∀ x0 : ο .
(
wceq
csx
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cfv
(
crn
(
cmpt2
(
λ x3 x4 .
cv
x1
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cxp
(
cv
x3
)
(
cv
x4
)
)
)
)
csigagen
)
)
⟶
wceq
cmeas
(
cmpt
(
λ x1 .
cuni
(
crn
csiga
)
)
(
λ x1 .
cab
(
λ x2 .
w3a
(
wf
(
cv
x1
)
(
co
cc0
cpnf
cicc
)
(
cv
x2
)
)
(
wceq
(
cfv
c0
(
cv
x2
)
)
cc0
)
(
wral
(
λ x3 .
wa
(
wbr
(
cv
x3
)
com
cdom
)
(
wdisj
(
λ x4 .
cv
x3
)
cv
)
⟶
wceq
(
cfv
(
cuni
(
cv
x3
)
)
(
cv
x2
)
)
(
cesum
(
λ x4 .
cv
x3
)
(
λ x4 .
cfv
(
cv
x4
)
(
cv
x2
)
)
)
)
(
λ x3 .
cpw
(
cv
x1
)
)
)
)
)
)
⟶
wceq
cdde
(
cmpt
(
λ x1 .
cpw
cr
)
(
λ x1 .
cif
(
wcel
cc0
(
cv
x1
)
)
c1
cc0
)
)
⟶
wceq
cae
(
copab
(
λ x1 x2 .
wceq
(
cfv
(
cdif
(
cuni
(
cdm
(
cv
x2
)
)
)
(
cv
x1
)
)
(
cv
x2
)
)
cc0
)
)
⟶
wceq
cfae
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cuni
(
crn
cmeas
)
)
(
λ x1 x2 .
copab
(
λ x3 x4 .
wa
(
wa
(
wcel
(
cv
x3
)
(
co
(
cdm
(
cv
x1
)
)
(
cuni
(
cdm
(
cv
x2
)
)
)
cmap
)
)
(
wcel
(
cv
x4
)
(
co
(
cdm
(
cv
x1
)
)
(
cuni
(
cdm
(
cv
x2
)
)
)
cmap
)
)
)
(
wbr
(
crab
(
λ x5 .
wbr
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x5
)
(
cv
x4
)
)
(
cv
x1
)
)
(
λ x5 .
cuni
(
cdm
(
cv
x2
)
)
)
)
(
cv
x2
)
cae
)
)
)
)
⟶
wceq
cmbfm
(
cmpt2
(
λ x1 x2 .
cuni
(
crn
csiga
)
)
(
λ x1 x2 .
cuni
(
crn
csiga
)
)
(
λ x1 x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wcel
(
cima
(
ccnv
(
cv
x3
)
)
(
cv
x4
)
)
(
cv
x1
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
co
(
cuni
(
cv
x2
)
)
(
cuni
(
cv
x1
)
)
cmap
)
)
)
⟶
wceq
coms
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cpw
(
cuni
(
cdm
(
cv
x1
)
)
)
)
(
λ x2 .
cinf
(
crn
(
cmpt
(
λ x3 .
crab
(
λ x4 .
wa
(
wss
(
cv
x2
)
(
cuni
(
cv
x4
)
)
)
(
wbr
(
cv
x4
)
com
cdom
)
)
(
λ x4 .
cpw
(
cdm
(
cv
x1
)
)
)
)
(
λ x3 .
cesum
(
λ x4 .
cv
x3
)
(
λ x4 .
cfv
(
cv
x4
)
(
cv
x1
)
)
)
)
)
(
co
cc0
cpnf
cicc
)
clt
)
)
)
⟶
wceq
ccarsg
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wceq
(
co
(
cfv
(
cin
(
cv
x3
)
(
cv
x2
)
)
(
cv
x1
)
)
(
cfv
(
cdif
(
cv
x3
)
(
cv
x2
)
)
(
cv
x1
)
)
cxad
)
(
cfv
(
cv
x3
)
(
cv
x1
)
)
)
(
λ x3 .
cpw
(
cuni
(
cdm
(
cv
x1
)
)
)
)
)
(
λ x2 .
cpw
(
cuni
(
cdm
(
cv
x1
)
)
)
)
)
)
⟶
wceq
csitg
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cuni
(
crn
cmeas
)
)
(
λ x1 x2 .
cmpt
(
λ x3 .
crab
(
λ x4 .
wa
(
wcel
(
crn
(
cv
x4
)
)
cfn
)
(
wral
(
λ x5 .
wcel
(
cfv
(
cima
(
ccnv
(
cv
x4
)
)
(
csn
(
cv
x5
)
)
)
(
cv
x2
)
)
(
co
cc0
cpnf
cico
)
)
(
λ x5 .
cdif
(
crn
(
cv
x4
)
)
(
csn
(
cfv
(
cv
x1
)
c0g
)
)
)
)
)
(
λ x4 .
co
(
cdm
(
cv
x2
)
)
(
cfv
(
cfv
(
cv
x1
)
ctopn
)
csigagen
)
cmbfm
)
)
(
λ x3 .
co
(
cv
x1
)
(
cmpt
(
λ x4 .
cdif
(
crn
(
cv
x3
)
)
(
csn
(
cfv
(
cv
x1
)
c0g
)
)
)
(
λ x4 .
co
(
cfv
(
cfv
(
cima
(
ccnv
(
cv
x3
)
)
(
csn
(
cv
x4
)
)
)
(
cv
x2
)
)
(
cfv
(
cfv
(
cv
x1
)
csca
)
crrh
)
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cvsca
)
)
)
cgsu
)
)
)
⟶
wceq
csitm
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cuni
(
crn
cmeas
)
)
(
λ x1 x2 .
cmpt2
(
λ x3 x4 .
cdm
(
co
(
cv
x1
)
(
cv
x2
)
csitg
)
)
(
λ x3 x4 .
cdm
(
co
(
cv
x1
)
(
cv
x2
)
csitg
)
)
(
λ x3 x4 .
cfv
(
co
(
cv
x3
)
(
cv
x4
)
(
cof
(
cfv
(
cv
x1
)
cds
)
)
)
(
co
(
co
cxrs
(
co
cc0
cpnf
cicc
)
cress
)
(
cv
x2
)
csitg
)
)
)
)
⟶
wceq
citgm
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cuni
(
crn
cmeas
)
)
(
λ x1 x2 .
cfv
(
co
(
cv
x1
)
(
cv
x2
)
csitg
)
(
co
(
cfv
(
co
(
cv
x1
)
(
cv
x2
)
csitm
)
cmetu
)
(
cfv
(
cv
x1
)
cuss
)
ccnext
)
)
)
⟶
wceq
csseq
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cun
(
cv
x1
)
(
ccom
clsw
(
cseq
(
cmpt2
(
λ x3 x4 .
cvv
)
(
λ x3 x4 .
cvv
)
(
λ x3 x4 .
co
(
cv
x3
)
(
cs1
(
cfv
(
cv
x3
)
(
cv
x2
)
)
)
cconcat
)
)
(
cxp
cn0
(
csn
(
co
(
cv
x1
)
(
cs1
(
cfv
(
cv
x1
)
(
cv
x2
)
)
)
cconcat
)
)
)
(
cfv
(
cv
x1
)
chash
)
)
)
)
)
⟶
wceq
cfib
(
co
(
cs2
cc0
c1
)
(
cmpt
(
λ x1 .
cin
(
cword
cn0
)
(
cima
(
ccnv
chash
)
(
cfv
c2
cuz
)
)
)
(
λ x1 .
co
(
cfv
(
co
(
cfv
(
cv
x1
)
chash
)
c2
cmin
)
(
cv
x1
)
)
(
cfv
(
co
(
cfv
(
cv
x1
)
chash
)
c1
cmin
)
(
cv
x1
)
)
caddc
)
)
csseq
)
⟶
wceq
cprb
(
crab
(
λ x1 .
wceq
(
cfv
(
cuni
(
cdm
(
cv
x1
)
)
)
(
cv
x1
)
)
c1
)
(
λ x1 .
cuni
(
crn
cmeas
)
)
)
⟶
wceq
ccprob
(
cmpt
(
λ x1 .
cprb
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cdm
(
cv
x1
)
)
(
λ x2 x3 .
cdm
(
cv
x1
)
)
(
λ x2 x3 .
co
(
cfv
(
cin
(
cv
x2
)
(
cv
x3
)
)
(
cv
x1
)
)
(
cfv
(
cv
x3
)
(
cv
x1
)
)
cdiv
)
)
)
⟶
wceq
crrv
(
cmpt
(
λ x1 .
cprb
)
(
λ x1 .
co
(
cdm
(
cv
x1
)
)
cbrsiga
cmbfm
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
corvc
x1
)
(
cmpt2
(
λ x2 x3 .
cab
(
λ x4 .
wfun
(
cv
x4
)
)
)
(
λ x2 x3 .
cvv
)
(
λ x2 x3 .
cima
(
ccnv
(
cv
x2
)
)
(
cab
(
λ x4 .
wbr
(
cv
x4
)
(
cv
x3
)
x1
)
)
)
)
)
⟶
wceq
crepr
(
cmpt
(
λ x1 .
cn0
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cpw
cn
)
(
λ x2 x3 .
cz
)
(
λ x2 x3 .
crab
(
λ x4 .
wceq
(
csu
(
co
cc0
(
cv
x1
)
cfzo
)
(
λ x5 .
cfv
(
cv
x5
)
(
cv
x4
)
)
)
(
cv
x3
)
)
(
λ x4 .
co
(
cv
x2
)
(
co
cc0
(
cv
x1
)
cfzo
)
cmap
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_sx
:
wceq
csx
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cfv
(
crn
(
cmpt2
(
λ x2 x3 .
cv
x0
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cxp
(
cv
x2
)
(
cv
x3
)
)
)
)
csigagen
)
)
(proof)
Theorem
df_meas
:
wceq
cmeas
(
cmpt
(
λ x0 .
cuni
(
crn
csiga
)
)
(
λ x0 .
cab
(
λ x1 .
w3a
(
wf
(
cv
x0
)
(
co
cc0
cpnf
cicc
)
(
cv
x1
)
)
(
wceq
(
cfv
c0
(
cv
x1
)
)
cc0
)
(
wral
(
λ x2 .
wa
(
wbr
(
cv
x2
)
com
cdom
)
(
wdisj
(
λ x3 .
cv
x2
)
cv
)
⟶
wceq
(
cfv
(
cuni
(
cv
x2
)
)
(
cv
x1
)
)
(
cesum
(
λ x3 .
cv
x2
)
(
λ x3 .
cfv
(
cv
x3
)
(
cv
x1
)
)
)
)
(
λ x2 .
cpw
(
cv
x0
)
)
)
)
)
)
(proof)
Theorem
df_dde
:
wceq
cdde
(
cmpt
(
λ x0 .
cpw
cr
)
(
λ x0 .
cif
(
wcel
cc0
(
cv
x0
)
)
c1
cc0
)
)
(proof)
Theorem
df_ae
:
wceq
cae
(
copab
(
λ x0 x1 .
wceq
(
cfv
(
cdif
(
cuni
(
cdm
(
cv
x1
)
)
)
(
cv
x0
)
)
(
cv
x1
)
)
cc0
)
)
(proof)
Theorem
df_fae
:
wceq
cfae
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cuni
(
crn
cmeas
)
)
(
λ x0 x1 .
copab
(
λ x2 x3 .
wa
(
wa
(
wcel
(
cv
x2
)
(
co
(
cdm
(
cv
x0
)
)
(
cuni
(
cdm
(
cv
x1
)
)
)
cmap
)
)
(
wcel
(
cv
x3
)
(
co
(
cdm
(
cv
x0
)
)
(
cuni
(
cdm
(
cv
x1
)
)
)
cmap
)
)
)
(
wbr
(
crab
(
λ x4 .
wbr
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cv
x0
)
)
(
λ x4 .
cuni
(
cdm
(
cv
x1
)
)
)
)
(
cv
x1
)
cae
)
)
)
)
(proof)
Theorem
df_mbfm
:
wceq
cmbfm
(
cmpt2
(
λ x0 x1 .
cuni
(
crn
csiga
)
)
(
λ x0 x1 .
cuni
(
crn
csiga
)
)
(
λ x0 x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wcel
(
cima
(
ccnv
(
cv
x2
)
)
(
cv
x3
)
)
(
cv
x0
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
co
(
cuni
(
cv
x1
)
)
(
cuni
(
cv
x0
)
)
cmap
)
)
)
(proof)
Theorem
df_oms
:
wceq
coms
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cpw
(
cuni
(
cdm
(
cv
x0
)
)
)
)
(
λ x1 .
cinf
(
crn
(
cmpt
(
λ x2 .
crab
(
λ x3 .
wa
(
wss
(
cv
x1
)
(
cuni
(
cv
x3
)
)
)
(
wbr
(
cv
x3
)
com
cdom
)
)
(
λ x3 .
cpw
(
cdm
(
cv
x0
)
)
)
)
(
λ x2 .
cesum
(
λ x3 .
cv
x2
)
(
λ x3 .
cfv
(
cv
x3
)
(
cv
x0
)
)
)
)
)
(
co
cc0
cpnf
cicc
)
clt
)
)
)
(proof)
Theorem
df_carsg
:
wceq
ccarsg
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wceq
(
co
(
cfv
(
cin
(
cv
x2
)
(
cv
x1
)
)
(
cv
x0
)
)
(
cfv
(
cdif
(
cv
x2
)
(
cv
x1
)
)
(
cv
x0
)
)
cxad
)
(
cfv
(
cv
x2
)
(
cv
x0
)
)
)
(
λ x2 .
cpw
(
cuni
(
cdm
(
cv
x0
)
)
)
)
)
(
λ x1 .
cpw
(
cuni
(
cdm
(
cv
x0
)
)
)
)
)
)
(proof)
Theorem
df_sitg
:
wceq
csitg
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cuni
(
crn
cmeas
)
)
(
λ x0 x1 .
cmpt
(
λ x2 .
crab
(
λ x3 .
wa
(
wcel
(
crn
(
cv
x3
)
)
cfn
)
(
wral
(
λ x4 .
wcel
(
cfv
(
cima
(
ccnv
(
cv
x3
)
)
(
csn
(
cv
x4
)
)
)
(
cv
x1
)
)
(
co
cc0
cpnf
cico
)
)
(
λ x4 .
cdif
(
crn
(
cv
x3
)
)
(
csn
(
cfv
(
cv
x0
)
c0g
)
)
)
)
)
(
λ x3 .
co
(
cdm
(
cv
x1
)
)
(
cfv
(
cfv
(
cv
x0
)
ctopn
)
csigagen
)
cmbfm
)
)
(
λ x2 .
co
(
cv
x0
)
(
cmpt
(
λ x3 .
cdif
(
crn
(
cv
x2
)
)
(
csn
(
cfv
(
cv
x0
)
c0g
)
)
)
(
λ x3 .
co
(
cfv
(
cfv
(
cima
(
ccnv
(
cv
x2
)
)
(
csn
(
cv
x3
)
)
)
(
cv
x1
)
)
(
cfv
(
cfv
(
cv
x0
)
csca
)
crrh
)
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cvsca
)
)
)
cgsu
)
)
)
(proof)
Theorem
df_sitm
:
wceq
csitm
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cuni
(
crn
cmeas
)
)
(
λ x0 x1 .
cmpt2
(
λ x2 x3 .
cdm
(
co
(
cv
x0
)
(
cv
x1
)
csitg
)
)
(
λ x2 x3 .
cdm
(
co
(
cv
x0
)
(
cv
x1
)
csitg
)
)
(
λ x2 x3 .
cfv
(
co
(
cv
x2
)
(
cv
x3
)
(
cof
(
cfv
(
cv
x0
)
cds
)
)
)
(
co
(
co
cxrs
(
co
cc0
cpnf
cicc
)
cress
)
(
cv
x1
)
csitg
)
)
)
)
(proof)
Theorem
df_itgm
:
wceq
citgm
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cuni
(
crn
cmeas
)
)
(
λ x0 x1 .
cfv
(
co
(
cv
x0
)
(
cv
x1
)
csitg
)
(
co
(
cfv
(
co
(
cv
x0
)
(
cv
x1
)
csitm
)
cmetu
)
(
cfv
(
cv
x0
)
cuss
)
ccnext
)
)
)
(proof)
Theorem
df_sseq
:
wceq
csseq
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cun
(
cv
x0
)
(
ccom
clsw
(
cseq
(
cmpt2
(
λ x2 x3 .
cvv
)
(
λ x2 x3 .
cvv
)
(
λ x2 x3 .
co
(
cv
x2
)
(
cs1
(
cfv
(
cv
x2
)
(
cv
x1
)
)
)
cconcat
)
)
(
cxp
cn0
(
csn
(
co
(
cv
x0
)
(
cs1
(
cfv
(
cv
x0
)
(
cv
x1
)
)
)
cconcat
)
)
)
(
cfv
(
cv
x0
)
chash
)
)
)
)
)
(proof)
Theorem
df_fib
:
wceq
cfib
(
co
(
cs2
cc0
c1
)
(
cmpt
(
λ x0 .
cin
(
cword
cn0
)
(
cima
(
ccnv
chash
)
(
cfv
c2
cuz
)
)
)
(
λ x0 .
co
(
cfv
(
co
(
cfv
(
cv
x0
)
chash
)
c2
cmin
)
(
cv
x0
)
)
(
cfv
(
co
(
cfv
(
cv
x0
)
chash
)
c1
cmin
)
(
cv
x0
)
)
caddc
)
)
csseq
)
(proof)
Theorem
df_prob
:
wceq
cprb
(
crab
(
λ x0 .
wceq
(
cfv
(
cuni
(
cdm
(
cv
x0
)
)
)
(
cv
x0
)
)
c1
)
(
λ x0 .
cuni
(
crn
cmeas
)
)
)
(proof)
Theorem
df_cndprob
:
wceq
ccprob
(
cmpt
(
λ x0 .
cprb
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cdm
(
cv
x0
)
)
(
λ x1 x2 .
cdm
(
cv
x0
)
)
(
λ x1 x2 .
co
(
cfv
(
cin
(
cv
x1
)
(
cv
x2
)
)
(
cv
x0
)
)
(
cfv
(
cv
x2
)
(
cv
x0
)
)
cdiv
)
)
)
(proof)
Theorem
df_rrv
:
wceq
crrv
(
cmpt
(
λ x0 .
cprb
)
(
λ x0 .
co
(
cdm
(
cv
x0
)
)
cbrsiga
cmbfm
)
)
(proof)
Theorem
df_orvc
:
∀ x0 :
ι → ο
.
wceq
(
corvc
x0
)
(
cmpt2
(
λ x1 x2 .
cab
(
λ x3 .
wfun
(
cv
x3
)
)
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cima
(
ccnv
(
cv
x1
)
)
(
cab
(
λ x3 .
wbr
(
cv
x3
)
(
cv
x2
)
x0
)
)
)
)
(proof)
Theorem
df_repr
:
wceq
crepr
(
cmpt
(
λ x0 .
cn0
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cpw
cn
)
(
λ x1 x2 .
cz
)
(
λ x1 x2 .
crab
(
λ x3 .
wceq
(
csu
(
co
cc0
(
cv
x0
)
cfzo
)
(
λ x4 .
cfv
(
cv
x4
)
(
cv
x3
)
)
)
(
cv
x2
)
)
(
λ x3 .
co
(
cv
x1
)
(
co
cc0
(
cv
x0
)
cfzo
)
cmap
)
)
)
)
(proof)