Search for blocks/addresses/...
Proofgold Asset
asset id
9e66990e32f6dd9c9ee3c463a3d6a5309cf1a8c13d659bf462c74d4e545c019d
asset hash
dbc7e1c00c28ceac1d7f965c8f5da5ed39b9d12610b16fce3ee78fb262cf6992
bday / block
9568
tx
2772d..
preasset
doc published by
PrCx1..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
7c691..
and9I
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
⟶
x8
⟶
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
)
x8
Definition
MetaFunctor_prop1
idT
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 .
x0
x4
⟶
x1
x4
x4
(
x2
x4
)
Definition
MetaFunctor_prop2
compT
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 .
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x1
x4
x5
x7
⟶
x1
x5
x6
x8
⟶
x1
x4
x6
(
x3
x4
x5
x6
x8
x7
)
Definition
MetaCat_IdR_p
idL
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 .
x0
x4
⟶
x0
x5
⟶
x1
x4
x5
x6
⟶
x3
x4
x4
x5
x6
(
x2
x4
)
=
x6
Definition
MetaCat_IdL_p
idR
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 .
x0
x4
⟶
x0
x5
⟶
x1
x4
x5
x6
⟶
x3
x4
x5
x5
(
x2
x5
)
x6
=
x6
Definition
MetaCat_Comp_assoc_p
compAssoc
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 x9 x10 .
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x1
x4
x5
x8
⟶
x1
x5
x6
x9
⟶
x1
x6
x7
x10
⟶
x3
x4
x5
x7
(
x3
x5
x6
x7
x10
x9
)
x8
=
x3
x4
x6
x7
x10
(
x3
x4
x5
x6
x9
x8
)
Definition
MetaCat
MetaCat
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
and
(
and
(
and
(
MetaFunctor_prop1
x0
x1
x2
x3
)
(
MetaFunctor_prop2
x0
x1
x2
x3
)
)
(
and
(
MetaCat_IdR_p
x0
x1
x2
x3
)
(
MetaCat_IdL_p
x0
x1
x2
x3
)
)
)
(
MetaCat_Comp_assoc_p
x0
x1
x2
x3
)
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
047c9..
MetaCat_I
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaFunctor_prop1
x0
x1
x2
x3
⟶
MetaFunctor_prop2
x0
x1
x2
x3
⟶
(
∀ x4 x5 x6 .
x0
x4
⟶
x0
x5
⟶
x1
x4
x5
x6
⟶
x3
x4
x4
x5
x6
(
x2
x4
)
=
x6
)
⟶
(
∀ x4 x5 x6 .
x0
x4
⟶
x0
x5
⟶
x1
x4
x5
x6
⟶
x3
x4
x5
x5
(
x2
x5
)
x6
=
x6
)
⟶
(
∀ x4 x5 x6 x7 x8 x9 x10 .
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x1
x4
x5
x8
⟶
x1
x5
x6
x9
⟶
x1
x6
x7
x10
⟶
x3
x4
x5
x7
(
x3
x5
x6
x7
x10
x9
)
x8
=
x3
x4
x6
x7
x10
(
x3
x4
x5
x6
x9
x8
)
)
⟶
MetaCat
x0
x1
x2
x3
(proof)
Theorem
7da4b..
MetaCat_E
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
∀ x4 : ο .
(
MetaFunctor_prop1
x0
x1
x2
x3
⟶
MetaFunctor_prop2
x0
x1
x2
x3
⟶
(
∀ x5 x6 x7 .
x0
x5
⟶
x0
x6
⟶
x1
x5
x6
x7
⟶
x3
x5
x5
x6
x7
(
x2
x5
)
=
x7
)
⟶
(
∀ x5 x6 x7 .
x0
x5
⟶
x0
x6
⟶
x1
x5
x6
x7
⟶
x3
x5
x6
x6
(
x2
x6
)
x7
=
x7
)
⟶
(
∀ x5 x6 x7 x8 x9 x10 x11 .
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x5
x6
x9
⟶
x1
x6
x7
x10
⟶
x1
x7
x8
x11
⟶
x3
x5
x6
x8
(
x3
x6
x7
x8
x11
x10
)
x9
=
x3
x5
x7
x8
x11
(
x3
x5
x6
x7
x10
x9
)
)
⟶
x4
)
⟶
x4
(proof)
Theorem
6f34f..
MetaCatOp
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
MetaCat
x0
(
λ x4 x5 .
x1
x5
x4
)
x2
(
λ x4 x5 x6 x7 x8 .
x3
x6
x5
x4
x8
x7
)
(proof)
Definition
MetaCat_monic_p
monic
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 .
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x1
x4
x5
x6
)
)
(
∀ x7 .
x0
x7
⟶
∀ x8 x9 .
x1
x7
x4
x8
⟶
x1
x7
x4
x9
⟶
x3
x7
x4
x5
x6
x8
=
x3
x7
x4
x5
x6
x9
⟶
x8
=
x9
)
Definition
MetaCat_terminal_p
terminal_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
and
(
x0
x4
)
(
∀ x6 .
x0
x6
⟶
and
(
x1
x6
x4
(
x5
x6
)
)
(
∀ x7 .
x1
x6
x4
x7
⟶
x7
=
x5
x6
)
)
Definition
MetaCat_initial_p
initial_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
and
(
x0
x4
)
(
∀ x6 .
x0
x6
⟶
and
(
x1
x4
x6
(
x5
x6
)
)
(
∀ x7 .
x1
x4
x6
x7
⟶
x7
=
x5
x6
)
)
Definition
MetaCat_product_p
product_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 .
λ x9 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x6
x4
x7
)
)
(
x1
x6
x5
x8
)
)
(
∀ x10 .
x0
x10
⟶
∀ x11 x12 .
x1
x10
x4
x11
⟶
x1
x10
x5
x12
⟶
and
(
and
(
and
(
x1
x10
x6
(
x9
x10
x11
x12
)
)
(
x3
x10
x6
x4
x7
(
x9
x10
x11
x12
)
=
x11
)
)
(
x3
x10
x6
x5
x8
(
x9
x10
x11
x12
)
=
x12
)
)
(
∀ x13 .
x1
x10
x6
x13
⟶
x3
x10
x6
x4
x7
x13
=
x11
⟶
x3
x10
x6
x5
x8
x13
=
x12
⟶
x13
=
x9
x10
x11
x12
)
)
Definition
MetaCat_product_constr_p
product_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 .
x0
x8
⟶
x0
x9
⟶
MetaCat_product_p
x0
x1
x2
x3
x8
x9
(
x4
x8
x9
)
(
x5
x8
x9
)
(
x6
x8
x9
)
(
x7
x8
x9
)
Definition
MetaCat_coproduct_p
coproduct_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 .
λ x9 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x4
x6
x7
)
)
(
x1
x5
x6
x8
)
)
(
∀ x10 .
x0
x10
⟶
∀ x11 x12 .
x1
x4
x10
x11
⟶
x1
x5
x10
x12
⟶
and
(
and
(
and
(
x1
x6
x10
(
x9
x10
x11
x12
)
)
(
x3
x4
x6
x10
(
x9
x10
x11
x12
)
x7
=
x11
)
)
(
x3
x5
x6
x10
(
x9
x10
x11
x12
)
x8
=
x12
)
)
(
∀ x13 .
x1
x6
x10
x13
⟶
x3
x4
x6
x10
x13
x7
=
x11
⟶
x3
x5
x6
x10
x13
x8
=
x12
⟶
x13
=
x9
x10
x11
x12
)
)
Definition
MetaCat_coproduct_constr_p
coproduct_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 .
x0
x8
⟶
x0
x9
⟶
MetaCat_coproduct_p
x0
x1
x2
x3
x8
x9
(
x4
x8
x9
)
(
x5
x8
x9
)
(
x6
x8
x9
)
(
x7
x8
x9
)
Definition
MetaCat_equalizer_buggy_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 .
λ x10 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x1
x4
x5
x6
)
)
(
x1
x4
x5
x7
)
)
(
x0
x8
)
)
(
x1
x8
x4
x9
)
)
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x1
x11
x4
x12
⟶
x3
x11
x4
x5
x6
x12
=
x3
x11
x4
x5
x7
x12
⟶
and
(
and
(
x1
x11
x8
(
x10
x11
x12
)
)
(
x3
x11
x8
x4
x9
(
x10
x11
x12
)
=
x12
)
)
(
∀ x13 .
x1
x11
x8
x13
⟶
x3
x11
x8
x4
x9
x13
=
x12
⟶
x13
=
x10
x11
x12
)
)
Definition
MetaCat_equalizer_buggy_struct_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 :
ι →
ι →
ι →
ι → ι
.
λ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 x8 .
x0
x7
⟶
x0
x8
⟶
∀ x9 x10 .
x1
x7
x8
x9
⟶
x1
x7
x8
x10
⟶
MetaCat_equalizer_buggy_p
x0
x1
x2
x3
x7
x8
x9
x10
(
x4
x7
x8
x9
x10
)
(
x5
x7
x8
x9
x10
)
(
x6
x7
x8
x9
x10
)
Definition
MetaCat_coequalizer_buggy_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 .
λ x10 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x1
x4
x5
x6
)
)
(
x1
x4
x5
x7
)
)
(
x0
x8
)
)
(
x1
x5
x8
x9
)
)
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x1
x5
x11
x12
⟶
x3
x4
x5
x11
x12
x6
=
x3
x4
x5
x11
x12
x7
⟶
and
(
and
(
x1
x8
x11
(
x10
x11
x12
)
)
(
x3
x5
x8
x11
(
x10
x11
x12
)
x9
=
x12
)
)
(
∀ x13 .
x1
x8
x11
x13
⟶
x3
x5
x8
x11
x13
x9
=
x12
⟶
x13
=
x10
x11
x12
)
)
Definition
MetaCat_coequalizer_buggy_struct_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 :
ι →
ι →
ι →
ι → ι
.
λ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 x8 .
x0
x7
⟶
x0
x8
⟶
∀ x9 x10 .
x1
x7
x8
x9
⟶
x1
x7
x8
x10
⟶
MetaCat_coequalizer_buggy_p
x0
x1
x2
x3
x7
x8
x9
x10
(
x4
x7
x8
x9
x10
)
(
x5
x7
x8
x9
x10
)
(
x6
x7
x8
x9
x10
)
Definition
MetaCat_pullback_buggy_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 x10 x11 .
λ x12 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x4
x6
x7
)
)
(
x1
x5
x6
x8
)
)
(
x0
x9
)
)
(
x1
x9
x4
x10
)
)
(
x1
x9
x5
x11
)
)
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x1
x13
x4
x14
⟶
∀ x15 .
x1
x13
x5
x15
⟶
x3
x13
x4
x6
x7
x14
=
x3
x13
x5
x6
x8
x15
⟶
and
(
and
(
and
(
x1
x13
x9
(
x12
x13
x14
x15
)
)
(
x3
x13
x9
x4
x10
(
x12
x13
x14
x15
)
=
x14
)
)
(
x3
x13
x9
x5
x11
(
x12
x13
x14
x15
)
=
x15
)
)
(
∀ x16 .
x1
x13
x9
x16
⟶
x3
x13
x9
x4
x10
x16
=
x14
⟶
x3
x13
x9
x5
x11
x16
=
x15
⟶
x16
=
x12
x13
x14
x15
)
)
Definition
MetaCat_pullback_buggy_struct_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 x4 x5 x6 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 x10 .
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
∀ x11 x12 .
x1
x8
x10
x11
⟶
x1
x9
x10
x12
⟶
MetaCat_pullback_buggy_p
x0
x1
x2
x3
x8
x9
x10
x11
x12
(
x4
x8
x9
x10
x11
x12
)
(
x5
x8
x9
x10
x11
x12
)
(
x6
x8
x9
x10
x11
x12
)
(
x7
x8
x9
x10
x11
x12
)
Definition
MetaCat_pushout_buggy_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 x10 x11 .
λ x12 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x6
x4
x7
)
)
(
x1
x6
x5
x8
)
)
(
x0
x9
)
)
(
x1
x4
x9
x10
)
)
(
x1
x5
x9
x11
)
)
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x1
x4
x13
x14
⟶
∀ x15 .
x1
x5
x13
x15
⟶
x3
x6
x4
x13
x14
x7
=
x3
x6
x5
x13
x15
x8
⟶
and
(
and
(
and
(
x1
x9
x13
(
x12
x13
x14
x15
)
)
(
x3
x4
x9
x13
(
x12
x13
x14
x15
)
x10
=
x14
)
)
(
x3
x5
x9
x13
(
x12
x13
x14
x15
)
x11
=
x15
)
)
(
∀ x16 .
x1
x9
x13
x16
⟶
x3
x4
x9
x13
x16
x10
=
x14
⟶
x3
x5
x9
x13
x16
x11
=
x15
⟶
x16
=
x12
x13
x14
x15
)
)
Definition
MetaCat_pushout_buggy_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 x4 x5 x6 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 x10 .
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
∀ x11 x12 .
x1
x10
x8
x11
⟶
x1
x10
x9
x12
⟶
MetaCat_pushout_buggy_p
x0
x1
x2
x3
x8
x9
x10
x11
x12
(
x4
x8
x9
x10
x11
x12
)
(
x5
x8
x9
x10
x11
x12
)
(
x6
x8
x9
x10
x11
x12
)
(
x7
x8
x9
x10
x11
x12
)
Definition
MetaCat_exp_p
exponent_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x8 x9 x10 x11 .
λ x12 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
x0
x8
)
(
x0
x9
)
)
(
x0
x10
)
)
(
x1
(
x4
x10
x8
)
x9
x11
)
)
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x1
(
x4
x13
x8
)
x9
x14
⟶
and
(
and
(
x1
x13
x10
(
x12
x13
x14
)
)
(
x3
(
x4
x13
x8
)
(
x4
x10
x8
)
x9
x11
(
x7
x10
x8
(
x4
x13
x8
)
(
x3
(
x4
x13
x8
)
x13
x10
(
x12
x13
x14
)
(
x5
x13
x8
)
)
(
x6
x13
x8
)
)
=
x14
)
)
(
∀ x15 .
x1
x13
x10
x15
⟶
x3
(
x4
x13
x8
)
(
x4
x10
x8
)
x9
x11
(
x7
x10
x8
(
x4
x13
x8
)
(
x3
(
x4
x13
x8
)
x13
x10
x15
(
x5
x13
x8
)
)
(
x6
x13
x8
)
)
=
x14
⟶
x15
=
x12
x13
x14
)
)
Definition
MetaCat_exp_constr_p
product_exponent_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x8 x9 :
ι →
ι → ι
.
λ x10 :
ι →
ι →
ι →
ι → ι
.
and
(
MetaCat_product_constr_p
x0
x1
x2
x3
x4
x5
x6
x7
)
(
∀ x11 x12 .
x0
x11
⟶
x0
x12
⟶
MetaCat_exp_p
x0
x1
x2
x3
x4
x5
x6
x7
x11
x12
(
x8
x11
x12
)
(
x9
x11
x12
)
(
x10
x11
x12
)
)
Definition
MetaCat_subobject_classifier_buggy_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
λ x6 x7 .
λ x8 :
ι →
ι →
ι → ι
.
λ x9 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
and
(
and
(
MetaCat_terminal_p
x0
x1
x2
x3
x4
x5
)
(
x1
x4
x6
x7
)
)
(
∀ x10 x11 x12 .
MetaCat_monic_p
x0
x1
x2
x3
x10
x11
x12
⟶
and
(
x1
x11
x6
(
x8
x10
x11
x12
)
)
(
MetaCat_pullback_buggy_p
x0
x1
x2
x3
x4
x11
x6
x7
(
x8
x10
x11
x12
)
x10
(
x5
x10
)
x12
(
x9
x10
x11
x12
)
)
)
Definition
MetaCat_nno_p
nno_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
λ x6 x7 x8 .
λ x9 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
MetaCat_terminal_p
x0
x1
x2
x3
x4
x5
)
(
x0
x6
)
)
(
x1
x4
x6
x7
)
)
(
x1
x6
x6
x8
)
)
(
∀ x10 x11 x12 .
x0
x10
⟶
x1
x4
x10
x11
⟶
x1
x10
x10
x12
⟶
and
(
and
(
and
(
x1
x6
x10
(
x9
x10
x11
x12
)
)
(
x3
x4
x6
x10
(
x9
x10
x11
x12
)
x7
=
x11
)
)
(
x3
x6
x6
x10
(
x9
x10
x11
x12
)
x8
=
x3
x6
x10
x10
x12
(
x9
x10
x11
x12
)
)
)
(
∀ x13 .
x1
x6
x10
x13
⟶
x3
x4
x6
x10
x13
x7
=
x11
⟶
x3
x6
x6
x10
x13
x8
=
x3
x6
x10
x10
x12
x13
⟶
x13
=
x9
x10
x11
x12
)
)
Theorem
9dd4b..
product_coproduct_Op
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 .
∀ x9 :
ι →
ι →
ι → ι
.
MetaCat_product_p
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
MetaCat_coproduct_p
x0
(
λ x10 x11 .
x1
x11
x10
)
x2
(
λ x10 x11 x12 x13 x14 .
x3
x12
x11
x10
x14
x13
)
x4
x5
x6
x7
x8
x9
(proof)
Theorem
31c77..
product_coproduct_constr_Op
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 :
ι →
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
x0
x1
x2
x3
x4
x5
x6
x7
⟶
MetaCat_coproduct_constr_p
x0
(
λ x8 x9 .
x1
x9
x8
)
x2
(
λ x8 x9 x10 x11 x12 .
x3
x10
x9
x8
x12
x11
)
x4
x5
x6
x7
(proof)
Theorem
df89e..
coproduct_product_Op
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 .
∀ x9 :
ι →
ι →
ι → ι
.
MetaCat_coproduct_p
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
MetaCat_product_p
x0
(
λ x10 x11 .
x1
x11
x10
)
x2
(
λ x10 x11 x12 x13 x14 .
x3
x12
x11
x10
x14
x13
)
x4
x5
x6
x7
x8
x9
(proof)
Theorem
2bad6..
coproduct_product_constr_Op
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 :
ι →
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
x0
x1
x2
x3
x4
x5
x6
x7
⟶
MetaCat_product_constr_p
x0
(
λ x8 x9 .
x1
x9
x8
)
x2
(
λ x8 x9 x10 x11 x12 .
x3
x10
x9
x8
x12
x11
)
x4
x5
x6
x7
(proof)
Known
and7I
and7I
:
∀ x0 x1 x2 x3 x4 x5 x6 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
Theorem
d9a97..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 x9 .
∀ x10 :
ι →
ι → ι
.
MetaCat_equalizer_buggy_p
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
⟶
MetaCat_coequalizer_buggy_p
x0
(
λ x11 x12 .
x1
x12
x11
)
x2
(
λ x11 x12 x13 x14 x15 .
x3
x13
x12
x11
x15
x14
)
x5
x4
x6
x7
x8
x9
x10
(proof)
Theorem
bcf11..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 :
ι →
ι →
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_buggy_struct_p
x0
x1
x2
x3
x4
x5
x6
⟶
MetaCat_coequalizer_buggy_struct_p
x0
(
λ x7 x8 .
x1
x8
x7
)
x2
(
λ x7 x8 x9 x10 x11 .
x3
x9
x8
x7
x11
x10
)
(
λ x7 x8 .
x4
x8
x7
)
(
λ x7 x8 .
x5
x8
x7
)
(
λ x7 x8 .
x6
x8
x7
)
(proof)
Theorem
db622..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 x9 .
∀ x10 :
ι →
ι → ι
.
MetaCat_coequalizer_buggy_p
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
⟶
MetaCat_equalizer_buggy_p
x0
(
λ x11 x12 .
x1
x12
x11
)
x2
(
λ x11 x12 x13 x14 x15 .
x3
x13
x12
x11
x15
x14
)
x5
x4
x6
x7
x8
x9
x10
(proof)
Theorem
e8468..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 :
ι →
ι →
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_buggy_struct_p
x0
x1
x2
x3
x4
x5
x6
⟶
MetaCat_equalizer_buggy_struct_p
x0
(
λ x7 x8 .
x1
x8
x7
)
x2
(
λ x7 x8 x9 x10 x11 .
x3
x9
x8
x7
x11
x10
)
(
λ x7 x8 .
x4
x8
x7
)
(
λ x7 x8 .
x5
x8
x7
)
(
λ x7 x8 .
x6
x8
x7
)
(proof)
Theorem
8f137..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 x9 x10 x11 .
∀ x12 :
ι →
ι →
ι → ι
.
MetaCat_pullback_buggy_p
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
MetaCat_pushout_buggy_p
x0
(
λ x13 x14 .
x1
x14
x13
)
x2
(
λ x13 x14 x15 x16 x17 .
x3
x15
x14
x13
x17
x16
)
x4
x5
x6
x7
x8
x9
x10
x11
x12
(proof)
Theorem
417a6..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 x5 x6 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_buggy_struct_p
x0
x1
x2
x3
x4
x5
x6
x7
⟶
MetaCat_pushout_buggy_constr_p
x0
(
λ x8 x9 .
x1
x9
x8
)
x2
(
λ x8 x9 x10 x11 x12 .
x3
x10
x9
x8
x12
x11
)
x4
x5
x6
x7
(proof)
Theorem
02b99..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 x9 x10 x11 .
∀ x12 :
ι →
ι →
ι → ι
.
MetaCat_pushout_buggy_p
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
MetaCat_pullback_buggy_p
x0
(
λ x13 x14 .
x1
x14
x13
)
x2
(
λ x13 x14 x15 x16 x17 .
x3
x15
x14
x13
x17
x16
)
x4
x5
x6
x7
x8
x9
x10
x11
x12
(proof)
Theorem
a4533..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 x5 x6 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_buggy_constr_p
x0
x1
x2
x3
x4
x5
x6
x7
⟶
MetaCat_pullback_buggy_struct_p
x0
(
λ x8 x9 .
x1
x9
x8
)
x2
(
λ x8 x9 x10 x11 x12 .
x3
x10
x9
x8
x12
x11
)
x4
x5
x6
x7
(proof)
Known
and4I
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Theorem
cf46e..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
∀ x4 x5 :
ι →
ι →
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_buggy_struct_p
x0
x1
x2
x3
x4
x5
x6
⟶
∀ x7 x8 x9 :
ι →
ι → ι
.
∀ x10 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
x0
x1
x2
x3
x7
x8
x9
x10
⟶
MetaCat_pullback_buggy_struct_p
x0
x1
x2
x3
(
λ x11 x12 x13 x14 x15 .
x4
(
x7
x11
x12
)
x13
(
x3
(
x7
x11
x12
)
x11
x13
x14
(
x8
x11
x12
)
)
(
x3
(
x7
x11
x12
)
x12
x13
x15
(
x9
x11
x12
)
)
)
(
λ x11 x12 x13 x14 x15 .
x3
(
x4
(
x7
x11
x12
)
x13
(
x3
(
x7
x11
x12
)
x11
x13
x14
(
x8
x11
x12
)
)
(
x3
(
x7
x11
x12
)
x12
x13
x15
(
x9
x11
x12
)
)
)
(
x7
x11
x12
)
x11
(
x8
x11
x12
)
(
x5
(
x7
x11
x12
)
x13
(
x3
(
x7
x11
x12
)
x11
x13
x14
(
x8
x11
x12
)
)
(
x3
(
x7
x11
x12
)
x12
x13
x15
(
x9
x11
x12
)
)
)
)
(
λ x11 x12 x13 x14 x15 .
x3
(
x4
(
x7
x11
x12
)
x13
(
x3
(
x7
x11
x12
)
x11
x13
x14
(
x8
x11
x12
)
)
(
x3
(
x7
x11
x12
)
x12
x13
x15
(
x9
x11
x12
)
)
)
(
x7
x11
x12
)
x12
(
x9
x11
x12
)
(
x5
(
x7
x11
x12
)
x13
(
x3
(
x7
x11
x12
)
x11
x13
x14
(
x8
x11
x12
)
)
(
x3
(
x7
x11
x12
)
x12
x13
x15
(
x9
x11
x12
)
)
)
)
(
λ x11 x12 x13 x14 x15 x16 x17 x18 .
x6
(
x7
x11
x12
)
x13
(
x3
(
x7
x11
x12
)
x11
x13
x14
(
x8
x11
x12
)
)
(
x3
(
x7
x11
x12
)
x12
x13
x15
(
x9
x11
x12
)
)
x16
(
x10
x11
x12
x16
x17
x18
)
)
(proof)
Theorem
6f81c..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_buggy_struct_p
x0
x1
x2
x3
x5
x7
x9
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
x0
x1
x2
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_buggy_struct_p
x0
x1
x2
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
(proof)
Theorem
f0f28..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_buggy_struct_p
x0
x1
x2
x3
x5
x7
x9
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
x0
x1
x2
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_buggy_constr_p
x0
x1
x2
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
(proof)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
famunion
famunion
:=
λ x0 .
λ x1 :
ι → ι
.
prim3
(
prim5
x0
x1
)
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Inj1
Inj1
:
ι
→
ι
Definition
Inj0
Inj0
:=
λ x0 .
prim5
x0
Inj1
Definition
setsum
setsum
:=
λ x0 x1 .
binunion
(
prim5
x0
Inj0
)
(
prim5
x1
Inj1
)
Definition
lam
Sigma
:=
λ x0 .
λ x1 :
ι → ι
.
famunion
x0
(
λ x2 .
prim5
(
x1
x2
)
(
setsum
x2
)
)
Param
ap
ap
:
ι
→
ι
→
ι
Definition
Pi
Pi
:=
λ x0 .
λ x1 :
ι → ι
.
{x2 ∈
prim4
(
lam
x0
(
λ x2 .
prim3
(
x1
x2
)
)
)
|
∀ x3 .
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
}
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Definition
HomSet
SetHom
:=
λ x0 x1 x2 .
x2
∈
setexp
x1
x0
Definition
True
True
:=
∀ x0 : ο .
x0
⟶
x0
Conjecture
31571..
:
MetaCat
(
λ x0 .
True
)
HomSet
(
λ x0 .
lam
x0
(
λ x1 .
x1
)
)
(
λ x0 x1 x2 x3 x4 .
lam
x0
(
λ x5 .
ap
x3
(
ap
x4
x5
)
)
)
Conjecture
637da..
:
MetaCat
(
λ x0 .
x0
∈
prim6
0
)
HomSet
(
λ x0 .
lam
x0
(
λ x1 .
x1
)
)
(
λ x0 x1 x2 x3 x4 .
lam
x0
(
λ x5 .
ap
x3
(
ap
x4
x5
)
)
)
Conjecture
95fe9..
:
MetaCat
(
λ x0 .
x0
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x0 .
lam
x0
(
λ x1 .
x1
)
)
(
λ x0 x1 x2 x3 x4 .
lam
x0
(
λ x5 .
ap
x3
(
ap
x4
x5
)
)
)
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
Pi_eta
Pi_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
lam
x0
(
ap
x2
)
=
x2
Known
encode_u_ext
encode_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
Theorem
fa807..
MetaCatSet_initial_gen
:
∀ x0 :
ι → ο
.
x0
0
⟶
∀ x1 : ο .
(
∀ x2 .
(
∀ x3 : ο .
(
∀ x4 :
ι → ι
.
MetaCat_initial_p
x0
HomSet
(
λ x5 .
lam
x5
(
λ x6 .
x6
)
)
(
λ x5 x6 x7 x8 x9 .
lam
x5
(
λ x10 .
ap
x8
(
ap
x9
x10
)
)
)
x2
x4
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
(proof)
Known
TrueI
TrueI
:
True
Theorem
80cab..
MetaCatSet_initial
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
(
λ x4 .
True
)
HomSet
(
λ x4 .
lam
x4
(
λ x5 .
x5
)
)
(
λ x4 x5 x6 x7 x8 .
lam
x4
(
λ x9 .
ap
x7
(
ap
x8
x9
)
)
)
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
ordsucc
ordsucc
:
ι
→
ι
Known
In_0_1
In_0_1
:
0
∈
1
Param
Sing
Sing
:
ι
→
ι
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
eq_1_Sing0
eq_1_Sing0
:
1
=
Sing
0
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Theorem
4cd1b..
MetaCatSet_terminal_gen
:
∀ x0 :
ι → ο
.
x0
1
⟶
∀ x1 : ο .
(
∀ x2 .
(
∀ x3 : ο .
(
∀ x4 :
ι → ι
.
MetaCat_terminal_p
x0
HomSet
(
λ x5 .
lam
x5
(
λ x6 .
x6
)
)
(
λ x5 x6 x7 x8 x9 .
lam
x5
(
λ x10 .
ap
x8
(
ap
x9
x10
)
)
)
x2
x4
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
(proof)
Theorem
370ea..
MetaCatSet_terminal
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
(
λ x4 .
True
)
HomSet
(
λ x4 .
lam
x4
(
λ x5 .
x5
)
)
(
λ x4 x5 x6 x7 x8 .
lam
x4
(
λ x9 .
ap
x7
(
ap
x8
x9
)
)
)
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
combine_funcs
combine_funcs
:
ι
→
ι
→
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Known
and6I
and6I
:
∀ x0 x1 x2 x3 x4 x5 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
Known
Inj0_setsum
Inj0_setsum
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
Inj0
x2
∈
setsum
x0
x1
Known
Inj1_setsum
Inj1_setsum
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
Inj1
x2
∈
setsum
x0
x1
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
setsum_Inj_inv
setsum_Inj_inv
:
∀ x0 x1 x2 .
x2
∈
setsum
x0
x1
⟶
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
x2
=
Inj0
x4
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
x2
=
Inj1
x4
)
⟶
x3
)
⟶
x3
)
Known
combine_funcs_eq1
combine_funcs_eq1
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 .
combine_funcs
x0
x1
x2
x3
(
Inj0
x4
)
=
x2
x4
Known
combine_funcs_eq2
combine_funcs_eq2
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 .
combine_funcs
x0
x1
x2
x3
(
Inj1
x4
)
=
x3
x4
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Theorem
3c078..
MetaCatSet_coproduct_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x0
x2
⟶
x0
(
setsum
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 : ο .
(
∀ x8 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
x0
HomSet
(
λ x9 .
lam
x9
(
λ x10 .
x10
)
)
(
λ x9 x10 x11 x12 x13 .
lam
x9
(
λ x14 .
ap
x12
(
ap
x13
x14
)
)
)
x2
x4
x6
x8
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
(proof)
Theorem
c28ea..
MetaCatSet_coproduct
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
(
λ x8 .
True
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
setprod
setprod
:=
λ x0 x1 .
lam
x0
(
λ x2 .
x1
)
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
ap0_Sigma
ap0_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
0
∈
x0
Known
ap1_Sigma
ap1_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
1
∈
x1
(
ap
x2
0
)
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Known
tuple_Sigma_eta
tuple_Sigma_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
(
ap
x2
0
)
(
ap
x2
1
)
)
=
x2
Known
tuple_2_setprod
tuple_2_setprod
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
setprod
x0
x1
Theorem
21e78..
MetaCatSet_product_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x0
x2
⟶
x0
(
setprod
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 : ο .
(
∀ x8 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
x0
HomSet
(
λ x9 .
lam
x9
(
λ x10 .
x10
)
)
(
λ x9 x10 x11 x12 x13 .
lam
x9
(
λ x14 .
ap
x12
(
ap
x13
x14
)
)
)
x2
x4
x6
x8
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
(proof)
Theorem
14d11..
MetaCatSet_product
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
(
λ x8 .
True
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
ZF_closed
ZF_closed
:
ι
→
ο
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
UnivOf_TransSet
UnivOf_TransSet
:
∀ x0 .
TransSet
(
prim6
x0
)
Known
ZF_Power_closed
ZF_Power_closed
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
prim4
x1
∈
x0
Known
PowerI
PowerI
:
∀ x0 x1 .
x1
⊆
x0
⟶
x1
∈
prim4
x0
Known
UnivOf_ZF_closed
UnivOf_ZF_closed
:
∀ x0 .
ZF_closed
(
prim6
x0
)
Theorem
6aa34..
UnivOf_Subq_closed
:
∀ x0 x1 .
x1
∈
prim6
x0
⟶
∀ x2 .
x2
⊆
x1
⟶
x2
∈
prim6
x0
(proof)
Definition
famunion_closed
famunion_closed
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
∈
x0
)
⟶
famunion
x1
x2
∈
x0
Definition
Union_closed
Union_closed
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
prim3
x1
∈
x0
Definition
Repl_closed
Repl_closed
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
∈
x0
)
⟶
prim5
x1
x2
∈
x0
Theorem
Union_Repl_famunion_closed
Union_Repl_famunion_closed
:
∀ x0 .
Union_closed
x0
⟶
Repl_closed
x0
⟶
famunion_closed
x0
(proof)
Definition
Power_closed
Power_closed
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
prim4
x1
∈
x0
Known
ZF_closed_E
ZF_closed_E
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 : ο .
(
Union_closed
x0
⟶
Power_closed
x0
⟶
Repl_closed
x0
⟶
x1
)
⟶
x1
Known
Empty_In_Power
Empty_In_Power
:
∀ x0 .
0
∈
prim4
x0
Theorem
1037d..
ZF_closed_0
:
∀ x0 x1 .
TransSet
x0
⟶
ZF_closed
x0
⟶
x1
∈
x0
⟶
0
∈
x0
(proof)
Known
In_ind
In_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
x0
x1
Known
Inj1_eq
Inj1_eq
:
∀ x0 .
Inj1
x0
=
binunion
(
Sing
0
)
(
prim5
x0
Inj1
)
Known
ZF_binunion_closed
ZF_binunion_closed
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
binunion
x1
x2
∈
x0
Known
ZF_Sing_closed
ZF_Sing_closed
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
Sing
x1
∈
x0
Known
ZF_Repl_closed
ZF_Repl_closed
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
∈
x0
)
⟶
prim5
x1
x2
∈
x0
Theorem
7eedb..
ZF_Inj1_closed
:
∀ x0 .
TransSet
x0
⟶
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
Inj1
x1
∈
x0
(proof)
Theorem
1045a..
ZF_Inj0_closed
:
∀ x0 .
TransSet
x0
⟶
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
Inj0
x1
∈
x0
(proof)
Theorem
32cb8..
ZF_setsum_closed
:
∀ x0 .
TransSet
x0
⟶
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
setsum
x1
x2
∈
x0
(proof)
Theorem
c59b3..
ZF_Sigma_closed
:
∀ x0 .
TransSet
x0
⟶
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
∈
x0
)
⟶
lam
x1
x2
∈
x0
(proof)
Theorem
ecfb5..
ZF_setprod_closed
:
∀ x0 .
TransSet
x0
⟶
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
setprod
x1
x2
∈
x0
(proof)
Known
Sep_In_Power
Sep_In_Power
:
∀ x0 .
∀ x1 :
ι → ο
.
Sep
x0
x1
∈
prim4
x0
Theorem
43ba5..
ZF_Pi_closed
:
∀ x0 .
TransSet
x0
⟶
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
∈
x0
)
⟶
Pi
x1
x2
∈
x0
(proof)
Theorem
33118..
ZF_setexp_closed
:
∀ x0 .
TransSet
x0
⟶
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
setexp
x2
x1
∈
x0
(proof)
Known
UnivOf_In
UnivOf_In
:
∀ x0 .
x0
∈
prim6
x0
Theorem
6694e..
MetaCatHFSet_initial
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
(
λ x4 .
x4
∈
prim6
0
)
HomSet
(
λ x4 .
lam
x4
(
λ x5 .
x5
)
)
(
λ x4 x5 x6 x7 x8 .
lam
x4
(
λ x9 .
ap
x7
(
ap
x8
x9
)
)
)
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
4e15c..
MetaCatSmallSet_initial
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
(
λ x4 .
x4
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x4 .
lam
x4
(
λ x5 .
x5
)
)
(
λ x4 x5 x6 x7 x8 .
lam
x4
(
λ x9 .
ap
x7
(
ap
x8
x9
)
)
)
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Known
ZF_ordsucc_closed
ZF_ordsucc_closed
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
x0
Theorem
d3646..
MetaCatHFSet_terminal
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
(
λ x4 .
x4
∈
prim6
0
)
HomSet
(
λ x4 .
lam
x4
(
λ x5 .
x5
)
)
(
λ x4 x5 x6 x7 x8 .
lam
x4
(
λ x9 .
ap
x7
(
ap
x8
x9
)
)
)
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
b5da2..
MetaCatSmallSet_terminal
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
(
λ x4 .
x4
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x4 .
lam
x4
(
λ x5 .
x5
)
)
(
λ x4 x5 x6 x7 x8 .
lam
x4
(
λ x9 .
ap
x7
(
ap
x8
x9
)
)
)
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
5604f..
MetaCatHFSet_coproduct
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
(
λ x8 .
x8
∈
prim6
0
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
002ee..
MetaCatSmallSet_coproduct
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
(
λ x8 .
x8
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
8ae2a..
MetaCatHFSet_product
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
(
λ x8 .
x8
∈
prim6
0
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
4281b..
MetaCatSmallSet_product
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
(
λ x8 .
x8
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Conjecture
fec92..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x2
⊆
x1
⟶
x0
x2
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_buggy_struct_p
x0
HomSet
(
λ x7 .
lam
x7
(
λ x8 .
x8
)
)
(
λ x7 x8 x9 x10 x11 .
lam
x7
(
λ x12 .
ap
x10
(
ap
x11
x12
)
)
)
x2
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Conjecture
03db4..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_buggy_struct_p
(
λ x6 .
True
)
HomSet
(
λ x6 .
lam
x6
(
λ x7 .
x7
)
)
(
λ x6 x7 x8 x9 x10 .
lam
x6
(
λ x11 .
ap
x9
(
ap
x10
x11
)
)
)
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
7d4ee..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_buggy_struct_p
(
λ x6 .
x6
∈
prim6
0
)
HomSet
(
λ x6 .
lam
x6
(
λ x7 .
x7
)
)
(
λ x6 x7 x8 x9 x10 .
lam
x6
(
λ x11 .
ap
x9
(
ap
x10
x11
)
)
)
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
e0823..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_buggy_struct_p
(
λ x6 .
x6
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x6 .
lam
x6
(
λ x7 .
x7
)
)
(
λ x6 x7 x8 x9 x10 .
lam
x6
(
λ x11 .
ap
x9
(
ap
x10
x11
)
)
)
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
32409..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x2
⊆
x1
⟶
x0
x2
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_buggy_struct_p
x0
HomSet
(
λ x7 .
lam
x7
(
λ x8 .
x8
)
)
(
λ x7 x8 x9 x10 x11 .
lam
x7
(
λ x12 .
ap
x10
(
ap
x11
x12
)
)
)
x2
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Conjecture
2c602..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x2
⊆
x1
⟶
x0
x2
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_buggy_struct_p
(
λ x7 .
x7
∈
prim6
0
)
HomSet
(
λ x7 .
lam
x7
(
λ x8 .
x8
)
)
(
λ x7 x8 x9 x10 x11 .
lam
x7
(
λ x12 .
ap
x10
(
ap
x11
x12
)
)
)
x2
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Conjecture
6fa47..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x2
⊆
x1
⟶
x0
x2
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_buggy_struct_p
(
λ x7 .
x7
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x7 .
lam
x7
(
λ x8 .
x8
)
)
(
λ x7 x8 x9 x10 x11 .
lam
x7
(
λ x12 .
ap
x10
(
ap
x11
x12
)
)
)
x2
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Conjecture
9048a..
:
∀ x0 :
ι → ο
.
MetaCat
x0
HomSet
(
λ x1 .
lam
x1
(
λ x2 .
x2
)
)
(
λ x1 x2 x3 x4 x5 .
lam
x1
(
λ x6 .
ap
x4
(
ap
x5
x6
)
)
)
⟶
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x2
⊆
x1
⟶
x0
x2
)
⟶
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x0
x2
⟶
x0
(
setprod
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x7 : ο .
(
∀ x8 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_buggy_struct_p
x0
HomSet
(
λ x9 .
lam
x9
(
λ x10 .
x10
)
)
(
λ x9 x10 x11 x12 x13 .
lam
x9
(
λ x14 .
ap
x12
(
ap
x13
x14
)
)
)
x2
x4
x6
x8
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Conjecture
e4971..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_buggy_struct_p
(
λ x8 .
True
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
f7865..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_buggy_struct_p
(
λ x8 .
x8
∈
prim6
0
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
27032..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_buggy_struct_p
(
λ x8 .
x8
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
72fd2..
:
∀ x0 :
ι → ο
.
MetaCat
x0
HomSet
(
λ x1 .
lam
x1
(
λ x2 .
x2
)
)
(
λ x1 x2 x3 x4 x5 .
lam
x1
(
λ x6 .
ap
x4
(
ap
x5
x6
)
)
)
⟶
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x2
⊆
x1
⟶
x0
x2
)
⟶
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x0
x2
⟶
x0
(
setsum
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x7 : ο .
(
∀ x8 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_buggy_constr_p
x0
HomSet
(
λ x9 .
lam
x9
(
λ x10 .
x10
)
)
(
λ x9 x10 x11 x12 x13 .
lam
x9
(
λ x14 .
ap
x12
(
ap
x13
x14
)
)
)
x2
x4
x6
x8
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Conjecture
6cf2e..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_buggy_constr_p
(
λ x8 .
True
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
f5042..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_buggy_constr_p
(
λ x8 .
x8
∈
prim6
0
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
3cfce..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_buggy_constr_p
(
λ x8 .
x8
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
4c8b8..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x0
x2
⟶
x0
(
setprod
x1
x2
)
)
⟶
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x0
x2
⟶
x0
(
setexp
x2
x1
)
)
⟶
MetaCat_exp_constr_p
x0
HomSet
(
λ x1 .
lam
x1
(
λ x2 .
x2
)
)
(
λ x1 x2 x3 x4 x5 .
lam
x1
(
λ x6 .
ap
x4
(
ap
x5
x6
)
)
)
setprod
(
λ x1 x2 .
lam
(
setprod
x1
x2
)
(
λ x3 .
ap
x3
0
)
)
(
λ x1 x2 .
lam
(
setprod
x1
x2
)
(
λ x3 .
ap
x3
1
)
)
(
λ x1 x2 x3 x4 x5 .
lam
x3
(
λ x6 .
lam
2
(
λ x7 .
If_i
(
x7
=
0
)
(
ap
x4
x6
)
(
ap
x5
x6
)
)
)
)
(
λ x1 x2 .
setexp
x2
x1
)
(
λ x1 x2 .
lam
(
setprod
(
setexp
x2
x1
)
x1
)
(
λ x3 .
ap
(
ap
x3
0
)
(
ap
x3
1
)
)
)
(
λ x1 x2 x3 x4 .
lam
x3
(
λ x5 .
lam
x1
(
λ x6 .
ap
x4
(
lam
2
(
λ x7 .
If_i
(
x7
=
0
)
x5
x6
)
)
)
)
)
Conjecture
e6b46..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x0
x2
⟶
x0
(
setprod
x1
x2
)
)
⟶
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x0
x2
⟶
x0
(
setexp
x2
x1
)
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 : ο .
(
∀ x8 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x9 : ο .
(
∀ x10 :
ι →
ι → ι
.
(
∀ x11 : ο .
(
∀ x12 :
ι →
ι → ι
.
(
∀ x13 : ο .
(
∀ x14 :
ι →
ι →
ι →
ι → ι
.
MetaCat_exp_constr_p
x0
HomSet
(
λ x15 .
lam
x15
(
λ x16 .
x16
)
)
(
λ x15 x16 x17 x18 x19 .
lam
x15
(
λ x20 .
ap
x18
(
ap
x19
x20
)
)
)
x2
x4
x6
x8
x10
x12
x14
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Conjecture
7a848..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι → ι
.
(
∀ x12 : ο .
(
∀ x13 :
ι →
ι →
ι →
ι → ι
.
MetaCat_exp_constr_p
(
λ x14 .
True
)
HomSet
(
λ x14 .
lam
x14
(
λ x15 .
x15
)
)
(
λ x14 x15 x16 x17 x18 .
lam
x14
(
λ x19 .
ap
x17
(
ap
x18
x19
)
)
)
x1
x3
x5
x7
x9
x11
x13
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
b673c..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι → ι
.
(
∀ x12 : ο .
(
∀ x13 :
ι →
ι →
ι →
ι → ι
.
MetaCat_exp_constr_p
(
λ x14 .
x14
∈
prim6
0
)
HomSet
(
λ x14 .
lam
x14
(
λ x15 .
x15
)
)
(
λ x14 x15 x16 x17 x18 .
lam
x14
(
λ x19 .
ap
x17
(
ap
x18
x19
)
)
)
x1
x3
x5
x7
x9
x11
x13
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
9c381..
:
∀ x0 :
ι → ο
.
∀ x1 x2 x3 .
MetaCat_monic_p
x0
HomSet
(
λ x4 .
lam
x4
(
λ x5 .
x5
)
)
(
λ x4 x5 x6 x7 x8 .
lam
x4
(
λ x9 .
ap
x7
(
ap
x8
x9
)
)
)
x1
x2
x3
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
ap
x3
x4
=
ap
x3
x5
⟶
x4
=
x5
Param
inv
inv
:
ι
→
(
ι
→
ι
) →
ι
→
ι
Conjecture
f0ae4..
:
∀ x0 :
ι → ο
.
x0
1
⟶
x0
2
⟶
MetaCat_subobject_classifier_buggy_p
x0
HomSet
(
λ x1 .
lam
x1
(
λ x2 .
x2
)
)
(
λ x1 x2 x3 x4 x5 .
lam
x1
(
λ x6 .
ap
x4
(
ap
x5
x6
)
)
)
1
(
λ x1 .
lam
x1
(
λ x2 .
0
)
)
2
(
lam
1
(
λ x1 .
1
)
)
(
λ x1 x2 x3 .
lam
x2
(
λ x4 .
If_i
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x1
)
(
ap
x3
x6
=
x4
)
⟶
x5
)
⟶
x5
)
1
0
)
)
(
λ x1 x2 x3 x4 x5 x6 .
lam
x4
(
λ x7 .
inv
x1
(
ap
x3
)
(
ap
x6
x7
)
)
)
Conjecture
d9711..
:
∀ x0 :
ι → ο
.
x0
1
⟶
x0
2
⟶
∀ x1 : ο .
(
∀ x2 .
(
∀ x3 : ο .
(
∀ x4 :
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 .
(
∀ x7 : ο .
(
∀ x8 .
(
∀ x9 : ο .
(
∀ x10 :
ι →
ι →
ι → ι
.
(
∀ x11 : ο .
(
∀ x12 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_subobject_classifier_buggy_p
x0
HomSet
(
λ x13 .
lam
x13
(
λ x14 .
x14
)
)
(
λ x13 x14 x15 x16 x17 .
lam
x13
(
λ x18 .
ap
x16
(
ap
x17
x18
)
)
)
x2
x4
x6
x8
x10
x12
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Conjecture
0f6a0..
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_subobject_classifier_buggy_p
(
λ x12 .
True
)
HomSet
(
λ x12 .
lam
x12
(
λ x13 .
x13
)
)
(
λ x12 x13 x14 x15 x16 .
lam
x12
(
λ x17 .
ap
x15
(
ap
x16
x17
)
)
)
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
67463..
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_subobject_classifier_buggy_p
(
λ x12 .
x12
∈
prim6
0
)
HomSet
(
λ x12 .
lam
x12
(
λ x13 .
x13
)
)
(
λ x12 x13 x14 x15 x16 .
lam
x12
(
λ x17 .
ap
x15
(
ap
x16
x17
)
)
)
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
39f19..
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_subobject_classifier_buggy_p
(
λ x12 .
x12
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x12 .
lam
x12
(
λ x13 .
x13
)
)
(
λ x12 x13 x14 x15 x16 .
lam
x12
(
λ x17 .
ap
x15
(
ap
x16
x17
)
)
)
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Param
omega
omega
:
ι
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Conjecture
e35b8..
:
∀ x0 :
ι → ο
.
x0
1
⟶
x0
omega
⟶
MetaCat_nno_p
x0
HomSet
(
λ x1 .
lam
x1
(
λ x2 .
x2
)
)
(
λ x1 x2 x3 x4 x5 .
lam
x1
(
λ x6 .
ap
x4
(
ap
x5
x6
)
)
)
1
(
λ x1 .
lam
x1
(
λ x2 .
0
)
)
omega
(
lam
1
(
λ x1 .
0
)
)
(
lam
omega
ordsucc
)
(
λ x1 x2 x3 .
lam
omega
(
nat_primrec
(
ap
x2
0
)
(
λ x4 .
ap
x3
)
)
)
Conjecture
492d5..
:
∀ x0 :
ι → ο
.
x0
1
⟶
x0
omega
⟶
∀ x1 : ο .
(
∀ x2 .
(
∀ x3 : ο .
(
∀ x4 :
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 .
(
∀ x7 : ο .
(
∀ x8 .
(
∀ x9 : ο .
(
∀ x10 .
(
∀ x11 : ο .
(
∀ x12 :
ι →
ι →
ι → ι
.
MetaCat_nno_p
x0
HomSet
(
λ x13 .
lam
x13
(
λ x14 .
x14
)
)
(
λ x13 x14 x15 x16 x17 .
lam
x13
(
λ x18 .
ap
x16
(
ap
x17
x18
)
)
)
x2
x4
x6
x8
x10
x12
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Conjecture
ed04c..
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 .
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι → ι
.
MetaCat_nno_p
(
λ x12 .
True
)
HomSet
(
λ x12 .
lam
x12
(
λ x13 .
x13
)
)
(
λ x12 x13 x14 x15 x16 .
lam
x12
(
λ x17 .
ap
x15
(
ap
x16
x17
)
)
)
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
1dac4..
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 .
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι → ι
.
MetaCat_nno_p
(
λ x12 .
x12
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x12 .
lam
x12
(
λ x13 .
x13
)
)
(
λ x12 x13 x14 x15 x16 .
lam
x12
(
λ x17 .
ap
x15
(
ap
x16
x17
)
)
)
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0