Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCit../14def..
PUT2m../be666..
vout
PrCit../6c0c4.. 3.71 bars
TMKwT../791a3.. negprop ownership controlledby Pr4zB.. upto 0
TMHgH../72d0f.. negprop ownership controlledby Pr4zB.. upto 0
TMJKb../023fd.. ownership of 9e733.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMNgH../540ff.. ownership of 78192.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMRYq../26e73.. ownership of 3738e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMMSJ../270c1.. ownership of 3a70d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMWUS../bc174.. ownership of 8432f.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMaPj../89501.. ownership of 6cfdd.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMT2R../833f3.. ownership of c3170.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMPBy../7ea6e.. ownership of 0df01.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUV35../dda07.. doc published by Pr4zB..
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition u4 := ordsucc u3
Definition u5 := ordsucc u4
Definition u6 := ordsucc u5
Definition u7 := ordsucc u6
Definition u8 := ordsucc u7
Definition u9 := ordsucc u8
Definition u10 := ordsucc u9
Definition u11 := ordsucc u10
Definition u12 := ordsucc u11
Definition u13 := ordsucc u12
Definition u14 := ordsucc u13
Definition u15 := ordsucc u14
Definition u16 := ordsucc u15
Definition u17 := ordsucc u16
Param atleastpatleastp : ιιο
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition u18 := ordsucc u17
Definition u19 := ordsucc u18
Definition u20 := ordsucc u19
Definition u21 := ordsucc u20
Definition u22 := ordsucc u21
Definition 94591.. := λ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . λ x2 x3 . x0 (x1 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x3 x2 x3 x3 x3 x3) (x1 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x3 x2) (x1 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x3 x2 x3 x3 x3 x3 x3 x3 x2) (x1 x3 x2 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x3) (x1 x3 x3 x3 x2 x2 x2 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x2 x3) (x1 x3 x2 x3 x3 x2 x3 x2 x2 x2 x3 x3 x3 x3 x3 x2 x3 x3 x3 x3 x3 x2 x3) (x1 x2 x3 x3 x3 x3 x2 x2 x2 x3 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x2 x3 x3 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x3) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3 x2 x2 x3 x2 x3 x3 x3 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x2 x3 x3 x2 x3 x3 x3 x2 x3 x3 x2 x3 x3) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x3 x2 x3 x2 x3 x3 x2 x3 x3) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x2 x3 x3 x3 x2 x2 x3 x3 x2 x3 x3) (x1 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x2 x2 x2 x3 x3 x3 x2) (x1 x2 x3 x3 x2 x3 x3 x3 x3 x3 x3 x3 x2 x3 x3 x3 x3 x2 x2 x2 x3 x2 x3) (x1 x3 x3 x3 x3 x2 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x3 x2) (x1 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x2 x3 x3 x2 x2 x2 x3) (x1 x3 x3 x3 x3 x3 x2 x2 x3 x3 x2 x3 x3 x3 x3 x3 x3 x3 x2 x3 x2 x2 x2) (x1 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x3 x2 x3 x2 x2)
Param 55574.. : ιιιιιιιιιιιιιιιιιιιιιιιι
Definition 0aea9.. := λ x0 x1 . x0u22x1u2294591.. (55574.. x0) (55574.. x1) = λ x3 x4 . x3
Param ordinalordinal : ιο
Param nat_pnat_p : ιο
Param equipequip : ιιο
Known 2ec5a.. : ∀ x0 . nat_p x0∀ x1 . atleastp (ordsucc x0) x1(∀ x2 . x2x1ordinal x2)∀ x2 : ο . (∀ x3 x4 . equip x0 x3x4x1x3x1x3x4x2)x2
Known nat_4nat_4 : nat_p 4
Param binunionbinunion : ιιι
Param SingSing : ιι
Known be1cd.. : ∀ x0 . nat_p x0∀ x1 . equip (ordsucc x0) x1(∀ x2 . x2x1ordinal x2)∀ x2 : ο . (∀ x3 x4 . equip x0 x3x4x1x3x1x3x4x1 = binunion x3 (Sing x4)x2)x2
Known nat_3nat_3 : nat_p 3
Definition nInnIn := λ x0 x1 . not (x0x1)
Known 865bf.. : ∀ x0 . atleastp u3 x0(∀ x1 . x1x0ordinal x1)∀ x1 : ο . (∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0x2x3x3x4x1)x1
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Definition 00974.. := λ x0 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . ∀ x1 : (ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι) → ο . x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x2)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x3)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x4)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x5)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x6)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x7)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x8)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x9)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x10)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x11)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x12)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x13)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x14)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x15)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x16)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x17)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x18)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x19)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x20)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x21)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x22)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x23)x1 x0
Param setminussetminus : ιιι
Known 4fd0a.. : ∀ x0 . x0setminus u17 u12∀ x1 : ι → ο . x1 u12x1 u13x1 u14x1 u15x1 u16x1 x0
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Param TwoRamseyGraph_3_6_17 : ιιο
Known 9cadc.. : ∀ x0 . x0u12atleastp u5 x0not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (TwoRamseyGraph_3_6_17 x1 x2))
Param setsumsetsum : ιιι
Known equip_traequip_tra : ∀ x0 x1 x2 . equip x0 x1equip x1 x2equip x0 x2
Param add_natadd_nat : ιιι
Known 893fe.. : add_nat u4 u1 = u5
Known c88e0.. : ∀ x0 x1 x2 x3 . nat_p x0nat_p x1equip x0 x2equip x1 x3equip (add_nat x0 x1) (setsum x2 x3)
Known nat_1nat_1 : nat_p 1
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Known 5169f..equip_Sing_1 : ∀ x0 . equip (Sing x0) u1
Known d778e.. : ∀ x0 x1 x2 x3 . equip x0 x2equip x1 x3(∀ x4 . x4x0nIn x4 x1)equip (binunion x0 x1) (setsum x2 x3)
Known equip_refequip_ref : ∀ x0 . equip x0 x0
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known a0edc.. : ∀ x0 . x0u17∀ x1 . x1u17TwoRamseyGraph_3_6_17 x0 x10aea9.. x0 x1
Known 2d2af.. : u12u17
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known nat_transnat_trans : ∀ x0 . nat_p x0∀ x1 . x1x0x1x0
Known nat_12nat_12 : nat_p u12
Known 27661.. : ∀ x0 . x0setminus u12 u10∀ x1 : ι → ο . x1 u10x1 u11x1 x0
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Known c8243.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . 00974.. x000974.. x1(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x13) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x14) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x13) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x14) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4)94591.. x0 x1 = λ x3 x4 . x3
Known 89d98.. : 55574.. u10 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x11
Known 76683.. : 55574.. u11 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x12
Known 2ab0d.. : 55574.. u12 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x13
Known fc2d4.. : ∀ x0 . x0setminus u13 u10∀ x1 : ι → ο . x1 u10x1 u11x1 u12x1 x0
Known d1edb.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . 00974.. x000974.. x1(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x14) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x16) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x14) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x16) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4)94591.. x0 x1 = λ x3 x4 . x3
Known 0b155.. : 55574.. u13 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x14
Known 98cac.. : ∀ x0 . x0setminus u14 u10∀ x1 : ι → ο . x1 u10x1 u11x1 u12x1 u13x1 x0
Known 38fc2.. : 55574.. u14 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x15
Known 7676f.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . 00974.. x000974.. x1(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x16) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x17) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x16) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x17) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4)94591.. x0 x1 = λ x3 x4 . x3
Known 332b1.. : ∀ x0 . x0setminus u15 u10∀ x1 : ι → ο . x1 u10x1 u11x1 u12x1 u13x1 u14x1 x0
Known 134b9.. : 55574.. u15 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x16
Known be4bb.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . 00974.. x000974.. x1(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x13) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x18) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x13) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x18) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4)94591.. x0 x1 = λ x3 x4 . x3
Known 16203.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . 00974.. x000974.. x1(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x16) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x18) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x16) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x18) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4)94591.. x0 x1 = λ x3 x4 . x3
Known b72e6.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . 00974.. x000974.. x1(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x17) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x18) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x15) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x17) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x18) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4)94591.. x0 x1 = λ x3 x4 . x3
Known 1aedf.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . 00974.. x000974.. x1(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x16) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x17) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x18) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x16) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x17) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x18) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4)94591.. x0 x1 = λ x3 x4 . x3
Known 853d4.. : ∀ x0 . x0setminus u16 u10∀ x1 : ι → ο . x1 u10x1 u11x1 u12x1 u13x1 u14x1 u15x1 x0
Known 7f524.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . 00974.. x000974.. x1(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x13) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x14) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x19) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4)(94591.. x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x13) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x14) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x19) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x21) = λ x3 x4 . x4)(94591.. x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 . x23) = λ x3 x4 . x4)94591.. x0 x1 = λ x3 x4 . x3
Known b8157.. : 55574.. u16 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x17
Known 44418.. : ∀ x0 . x0u10∀ x1 : ι → ο . x1 0x1 u1x1 u2x1 u3x1 u4x1 u5x1 u6x1 u7x1 u8x1 u9x1 x0
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known cases_1cases_1 : ∀ x0 . x0u1∀ x1 : ι → ο . x1 0x1 x0
Known cases_2cases_2 : ∀ x0 . x0u2∀ x1 : ι → ο . x1 0x1 u1x1 x0
Known cases_3cases_3 : ∀ x0 . x0u3∀ x1 : ι → ο . x1 0x1 u1x1 u2x1 x0
Known 7410a.. : 55574.. 0 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x1
Known fa851.. : 55574.. u2 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x3
Known In_no2cycleIn_no2cycle : ∀ x0 x1 . x0x1x1x0False
Known aafc6.. : 55574.. u1 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x2
Known 9379b.. : 55574.. u3 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x4
Known 5f4d4.. : 55574.. u4 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x5
Known bb555.. : 55574.. u18 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x19
Known b535d.. : 55574.. u5 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x6
Known 54789.. : 55574.. u20 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x21
Known 8ef56.. : 55574.. u6 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x7
Known 151b0.. : 55574.. u7 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x8
Known 9e99f.. : 55574.. u8 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x9
Known 896c4.. : 55574.. u9 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x10
Known 18048.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . 00974.. x000974.. x1or (94591.. x0 x1 = λ x3 x4 . x3) (94591.. x0 x1 = λ x3 x4 . x4)
Known FalseEFalseE : False∀ x0 : ο . x0
Known d91eb.. : ∀ x0 . x0u2200974.. (55574.. x0)
Known In_no3cycleIn_no3cycle : ∀ x0 x1 x2 . x0x1x1x2x2x0False
Known In_no4cycleIn_no4cycle : ∀ x0 x1 x2 x3 . x0x1x1x2x2x3x3x0False
Known e46ec.. : u17u22
Known 86222.. : ∀ x0 . x0setminus u10 u6∀ x1 : ι → ο . x1 u6x1 u7x1 u8x1 u9x1 x0
Known 620a1.. : ∀ x0 . x0u6atleastp u4 x0not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (0aea9.. x1 x2))
Known nat_6nat_6 : nat_p 6
Known 480b2.. : add_nat u3 u1 = u4
Known Subq_refSubq_ref : ∀ x0 . x0x0
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known nat_p_transnat_p_trans : ∀ x0 . nat_p x0∀ x1 . x1x0nat_p x1
Known nat_17nat_17 : nat_p u17
Theorem c3170.. : ∀ x0 . x0u17atleastp u5 x0(∀ x1 . x1x0not (0aea9.. x1 u18))(∀ x1 . x1x0not (0aea9.. x1 u20))not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (0aea9.. x1 x2)) (proof)
Known nat_5nat_5 : nat_p 5
Known dcb62.. : ∀ x0 . x0setminus u22 u17∀ x1 : ι → ο . x1 u17x1 u18x1 u19x1 u20x1 u21x1 x0
Known 5f797.. : 0aea9.. u17 u18
Known 66f20.. : ∀ x0 . x0u17∀ x1 : ι → ο . x1 0x1 u1x1 u2x1 u3x1 u4x1 u5x1 u6x1 u7x1 u8x1 u9x1 u10x1 u11x1 u12x1 u13x1 u14x1 u15x1 u16x1 x0
Known 46814.. : 012
Known 2b77d.. : 112
Known 7c2ac.. : 212
Known 2f583.. : 312
Known e4fc0.. : 412
Known 04716.. : 512
Known fbe39.. : 612
Known 35d73.. : 712
Known 5196c.. : 812
Known 4fa36.. : 912
Known 42552.. : 1012
Known fee2e.. : 1112
Known a1a10.. : u12u17
Known 1435b.. : 55574.. u19 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x20
Known 7315d.. : u13u17
Known 35e01.. : u14u17
Known 31b8d.. : u15u17
Known dfaf3.. : u16u17
Known e86b0.. : 55574.. u17 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x18
Known 6eb03.. : 0aea9.. u17 u20
Known 50d90.. : ∀ x0 . x0u16atleastp u5 x0(∀ x1 . x1x0not (0aea9.. x1 u17))(∀ x1 . x1x0not (0aea9.. x1 u21))not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (0aea9.. x1 x2))
Known 667cd.. : 55574.. u21 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x22
Known c1d56.. : u17u21
Known e0489.. : u17u18
Known 4a27e.. : 0aea9.. u18 u19
Known 2d95b.. : u17u20
Known 42954.. : u17 = u20∀ x0 : ο . x0
Known 994f0.. : 0aea9.. u18 u21
Known 25029.. : u18u19
Known f355c.. : 0aea9.. u19 u20
Known 82d29.. : ∀ x0 . x0u18atleastp u5 x0(∀ x1 . x1x0not (0aea9.. x1 u19))(∀ x1 . x1x0not (0aea9.. x1 u21))not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (0aea9.. x1 x2))
Known edc13.. : u18 = u19∀ x0 : ο . x0
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Known 9ea5b.. : u19u20
Known 11aea.. : 0aea9.. u20 u21
Known c955e.. : u20u21
Known 5922f.. : ∀ x0 . x0u17atleastp u6 x0not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (TwoRamseyGraph_3_6_17 x1 x2))
Known 561b1.. : add_nat u5 u1 = u6
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known daa33.. : nat_p u22
Theorem 8432f.. : ∀ x0 . x0u22atleastp u7 x0not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (0aea9.. x1 x2)) (proof)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition TwoRamseyProp_atleastp := λ x0 x1 x2 . ∀ x3 : ι → ι → ο . (∀ x4 x5 . x3 x4 x5x3 x5 x4)or (∀ x4 : ο . (∀ x5 . and (x5x2) (and (atleastp x0 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)x3 x6 x7))x4)x4) (∀ x4 : ο . (∀ x5 . and (x5x2) (and (atleastp x1 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)not (x3 x6 x7)))x4)x4)
Known ebffb.. : ∀ x0 x1 . 0aea9.. x0 x10aea9.. x1 x0
Known 907a2.. : ∀ x0 . x0u22atleastp u3 x0not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)0aea9.. x1 x2)
Theorem 3738e.. : not (TwoRamseyProp_atleastp u3 u7 u22) (proof)
Param TwoRamseyPropTwoRamseyProp : ιιιο
Known TwoRamseyProp_atleastp_atleastp : ∀ x0 x1 x2 x3 x4 . TwoRamseyProp x0 x2 x4atleastp x1 x0atleastp x3 x2TwoRamseyProp_atleastp x1 x3 x4
Known atleastp_ref : ∀ x0 . atleastp x0 x0
Theorem not_TwoRamseyProp_3_7_22not_TwoRamseyProp_3_7_22 : not (TwoRamseyProp 3 7 22) (proof)