Search for blocks/addresses/...
Proofgold Asset
asset id
e6f27be7710749578fc1cbdf5d2ee870bb1b4a0f21ec8854822f8f48f60921ca
asset hash
2c17c509a2a04a9a4501dbb7fab8f92f458e4b23b299874b052a3f24b50f69ef
bday / block
48187
tx
7b7ca..
preasset
doc published by
PrGM6..
Param
455db..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
cbd9e..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Param
86706..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Param
35fb6..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Known
49b9e..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
∀ x9 .
x9
∈
x1
⟶
∀ x10 .
x10
∈
x1
⟶
∀ x11 .
x11
∈
x1
⟶
∀ x12 .
x12
∈
x1
⟶
∀ x13 .
x13
∈
x1
⟶
∀ x14 .
x14
∈
x1
⟶
∀ x15 .
x15
∈
x1
⟶
(
∀ x16 .
x16
∈
x1
⟶
∀ x17 .
x17
∈
x1
⟶
x0
x16
x17
⟶
x0
x17
x16
)
⟶
(
x2
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
455db..
x0
x2
x3
x4
x5
x6
x7
⟶
cbd9e..
(
λ x16 x17 .
not
(
x0
x16
x17
)
)
x8
x9
x10
x11
x12
x13
x14
x15
⟶
86706..
x1
x0
⟶
35fb6..
x1
x0
⟶
(
x0
x2
x8
⟶
not
(
x0
x2
x15
)
⟶
False
)
⟶
(
x0
x2
x9
⟶
not
(
x0
x2
x10
)
⟶
False
)
⟶
(
x0
x2
x8
⟶
x0
x7
x8
⟶
not
(
x0
x7
x15
)
⟶
False
)
⟶
False
Known
d876b..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
455db..
x1
x2
x3
x4
x5
x6
x7
⟶
455db..
x1
x2
x4
x3
x6
x5
x7
Known
22a46..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
cbd9e..
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
cbd9e..
x1
x9
x8
x7
x6
x5
x4
x3
x2
Theorem
ce95b..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
∀ x9 .
x9
∈
x1
⟶
∀ x10 .
x10
∈
x1
⟶
∀ x11 .
x11
∈
x1
⟶
∀ x12 .
x12
∈
x1
⟶
∀ x13 .
x13
∈
x1
⟶
∀ x14 .
x14
∈
x1
⟶
∀ x15 .
x15
∈
x1
⟶
(
∀ x16 .
x16
∈
x1
⟶
∀ x17 .
x17
∈
x1
⟶
x0
x16
x17
⟶
x0
x17
x16
)
⟶
(
x2
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
455db..
x0
x2
x3
x4
x5
x6
x7
⟶
cbd9e..
(
λ x16 x17 .
not
(
x0
x16
x17
)
)
x8
x9
x10
x11
x12
x13
x14
x15
⟶
86706..
x1
x0
⟶
35fb6..
x1
x0
⟶
(
x0
x2
x15
⟶
not
(
x0
x2
x8
)
⟶
False
)
⟶
(
x0
x2
x15
⟶
x0
x7
x15
⟶
not
(
x0
x7
x8
)
⟶
False
)
⟶
(
x0
x2
x14
⟶
not
(
x0
x2
x13
)
⟶
False
)
⟶
False
...
Known
35806..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
cbd9e..
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
cbd9e..
x1
x2
x4
x3
x6
x5
x8
x7
x9
Theorem
d0365..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
∀ x9 .
x9
∈
x1
⟶
∀ x10 .
x10
∈
x1
⟶
∀ x11 .
x11
∈
x1
⟶
∀ x12 .
x12
∈
x1
⟶
∀ x13 .
x13
∈
x1
⟶
∀ x14 .
x14
∈
x1
⟶
∀ x15 .
x15
∈
x1
⟶
(
∀ x16 .
x16
∈
x1
⟶
∀ x17 .
x17
∈
x1
⟶
x0
x16
x17
⟶
x0
x17
x16
)
⟶
(
x2
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
455db..
x0
x2
x3
x4
x5
x6
x7
⟶
cbd9e..
(
λ x16 x17 .
not
(
x0
x16
x17
)
)
x8
x9
x10
x11
x12
x13
x14
x15
⟶
86706..
x1
x0
⟶
35fb6..
x1
x0
⟶
(
x0
x2
x15
⟶
not
(
x0
x2
x8
)
⟶
False
)
⟶
(
x0
x2
x15
⟶
x0
x7
x15
⟶
not
(
x0
x7
x8
)
⟶
False
)
⟶
False
...
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
9a04c..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
∀ x9 .
x9
∈
x1
⟶
∀ x10 .
x10
∈
x1
⟶
∀ x11 .
x11
∈
x1
⟶
∀ x12 .
x12
∈
x1
⟶
∀ x13 .
x13
∈
x1
⟶
∀ x14 .
x14
∈
x1
⟶
∀ x15 .
x15
∈
x1
⟶
(
∀ x16 .
x16
∈
x1
⟶
∀ x17 .
x17
∈
x1
⟶
x0
x16
x17
⟶
x0
x17
x16
)
⟶
(
x2
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x9
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x10
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x11
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x12
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x13
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x14
⟶
∀ x16 : ο .
x16
)
⟶
(
x2
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
(
x3
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
(
x4
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
(
x5
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
(
x6
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
(
x7
=
x15
⟶
∀ x16 : ο .
x16
)
⟶
455db..
x0
x2
x3
x4
x5
x6
x7
⟶
cbd9e..
(
λ x16 x17 .
not
(
x0
x16
x17
)
)
x8
x9
x10
x11
x12
x13
x14
x15
⟶
86706..
x1
x0
⟶
35fb6..
x1
x0
⟶
False
...