| vout |
|---|
PrFwu../7e956.. 24.86 barsTMF4P../9000c.. ownership of 9a04c.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMGSw../d8114.. ownership of d5c35.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMZmt../5858e.. ownership of d0365.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMYej../b9bd7.. ownership of 3415f.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMVQh../dc4e7.. ownership of ce95b.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMTTQ../d4c80.. ownership of af276.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0PUgKe../e6f27.. doc published by PrGM6..Param 455db.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → οParam cbd9e.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → οDefinition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseParam 86706.. : ι → (ι → ι → ο) → οParam 35fb6.. : ι → (ι → ι → ο) → οKnown 49b9e.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2 ∈ x1 ⟶ ∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ ∀ x10 . x10 ∈ x1 ⟶ ∀ x11 . x11 ∈ x1 ⟶ ∀ x12 . x12 ∈ x1 ⟶ ∀ x13 . x13 ∈ x1 ⟶ ∀ x14 . x14 ∈ x1 ⟶ ∀ x15 . x15 ∈ x1 ⟶ (∀ x16 . x16 ∈ x1 ⟶ ∀ x17 . x17 ∈ x1 ⟶ x0 x16 x17 ⟶ x0 x17 x16) ⟶ (x2 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x15 ⟶ ∀ x16 : ο . x16) ⟶ 455db.. x0 x2 x3 x4 x5 x6 x7 ⟶ cbd9e.. (λ x16 x17 . not (x0 x16 x17)) x8 x9 x10 x11 x12 x13 x14 x15 ⟶ 86706.. x1 x0 ⟶ 35fb6.. x1 x0 ⟶ (x0 x2 x8 ⟶ not (x0 x2 x15) ⟶ False) ⟶ (x0 x2 x9 ⟶ not (x0 x2 x10) ⟶ False) ⟶ (x0 x2 x8 ⟶ x0 x7 x8 ⟶ not (x0 x7 x15) ⟶ False) ⟶ FalseKnown d876b.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ 455db.. x1 x2 x3 x4 x5 x6 x7 ⟶ 455db.. x1 x2 x4 x3 x6 x5 x7Known 22a46.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ cbd9e.. x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ cbd9e.. x1 x9 x8 x7 x6 x5 x4 x3 x2Theorem ce95b.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2 ∈ x1 ⟶ ∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ ∀ x10 . x10 ∈ x1 ⟶ ∀ x11 . x11 ∈ x1 ⟶ ∀ x12 . x12 ∈ x1 ⟶ ∀ x13 . x13 ∈ x1 ⟶ ∀ x14 . x14 ∈ x1 ⟶ ∀ x15 . x15 ∈ x1 ⟶ (∀ x16 . x16 ∈ x1 ⟶ ∀ x17 . x17 ∈ x1 ⟶ x0 x16 x17 ⟶ x0 x17 x16) ⟶ (x2 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x15 ⟶ ∀ x16 : ο . x16) ⟶ 455db.. x0 x2 x3 x4 x5 x6 x7 ⟶ cbd9e.. (λ x16 x17 . not (x0 x16 x17)) x8 x9 x10 x11 x12 x13 x14 x15 ⟶ 86706.. x1 x0 ⟶ 35fb6.. x1 x0 ⟶ (x0 x2 x15 ⟶ not (x0 x2 x8) ⟶ False) ⟶ (x0 x2 x15 ⟶ x0 x7 x15 ⟶ not (x0 x7 x8) ⟶ False) ⟶ (x0 x2 x14 ⟶ not (x0 x2 x13) ⟶ False) ⟶ False...
Known 35806.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ cbd9e.. x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ cbd9e.. x1 x2 x4 x3 x6 x5 x8 x7 x9Theorem d0365.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2 ∈ x1 ⟶ ∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ ∀ x10 . x10 ∈ x1 ⟶ ∀ x11 . x11 ∈ x1 ⟶ ∀ x12 . x12 ∈ x1 ⟶ ∀ x13 . x13 ∈ x1 ⟶ ∀ x14 . x14 ∈ x1 ⟶ ∀ x15 . x15 ∈ x1 ⟶ (∀ x16 . x16 ∈ x1 ⟶ ∀ x17 . x17 ∈ x1 ⟶ x0 x16 x17 ⟶ x0 x17 x16) ⟶ (x2 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x15 ⟶ ∀ x16 : ο . x16) ⟶ 455db.. x0 x2 x3 x4 x5 x6 x7 ⟶ cbd9e.. (λ x16 x17 . not (x0 x16 x17)) x8 x9 x10 x11 x12 x13 x14 x15 ⟶ 86706.. x1 x0 ⟶ 35fb6.. x1 x0 ⟶ (x0 x2 x15 ⟶ not (x0 x2 x8) ⟶ False) ⟶ (x0 x2 x15 ⟶ x0 x7 x15 ⟶ not (x0 x7 x8) ⟶ False) ⟶ False...
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x2) ⟶ (x1 ⟶ x2) ⟶ x2Known dnegdneg : ∀ x0 : ο . not (not x0) ⟶ x0Known andIandI : ∀ x0 x1 : ο . x0 ⟶ x1 ⟶ and x0 x1Known orILorIL : ∀ x0 x1 : ο . x0 ⟶ or x0 x1Known orIRorIR : ∀ x0 x1 : ο . x1 ⟶ or x0 x1Theorem 9a04c.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2 ∈ x1 ⟶ ∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ ∀ x10 . x10 ∈ x1 ⟶ ∀ x11 . x11 ∈ x1 ⟶ ∀ x12 . x12 ∈ x1 ⟶ ∀ x13 . x13 ∈ x1 ⟶ ∀ x14 . x14 ∈ x1 ⟶ ∀ x15 . x15 ∈ x1 ⟶ (∀ x16 . x16 ∈ x1 ⟶ ∀ x17 . x17 ∈ x1 ⟶ x0 x16 x17 ⟶ x0 x17 x16) ⟶ (x2 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x15 ⟶ ∀ x16 : ο . x16) ⟶ 455db.. x0 x2 x3 x4 x5 x6 x7 ⟶ cbd9e.. (λ x16 x17 . not (x0 x16 x17)) x8 x9 x10 x11 x12 x13 x14 x15 ⟶ 86706.. x1 x0 ⟶ 35fb6.. x1 x0 ⟶ False...
|
|