Search for blocks/addresses/...
Proofgold Asset
asset id
f3b6228743dfec8ba752dcc80de96e7e5c9c7e88d888ba38ba58e38af5595bed
asset hash
08206edf5f2b2c7fcd2243599e5068717ddcfb62b1633e81ed627b82e19b5169
bday / block
14556
tx
b2160..
preasset
doc published by
Pr4zB..
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Definition
atleastp
atleastp
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
inj
x0
x1
x3
⟶
x2
)
⟶
x2
Param
ordsucc
ordsucc
:
ι
→
ι
Known
In_0_2
In_0_2
:
0
∈
2
Known
In_1_2
In_1_2
:
1
∈
2
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
neq_1_0
neq_1_0
:
1
=
0
⟶
∀ x0 : ο .
x0
Theorem
ad7a7..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
(
∀ x9 .
x9
∈
x8
⟶
∀ x10 :
ι → ο
.
x10
x0
⟶
x10
x1
⟶
x10
x2
⟶
x10
x3
⟶
x10
x4
⟶
x10
x5
⟶
x10
x6
⟶
x10
x7
⟶
x10
x9
)
⟶
∀ x9 .
x9
⊆
x8
⟶
atleastp
2
x9
⟶
∀ x10 : ο .
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x3
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x3
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x3
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x4
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x4
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x4
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
x10
(proof)
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
In_2_3
In_2_3
:
2
∈
3
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_trans
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
nat_3
nat_3
:
nat_p
3
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
setminus_Subq
setminus_Subq
:
∀ x0 x1 .
setminus
x0
x1
⊆
x0
Theorem
a6a5a..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
(
∀ x9 .
x9
∈
x8
⟶
∀ x10 :
ι → ο
.
x10
x0
⟶
x10
x1
⟶
x10
x2
⟶
x10
x3
⟶
x10
x4
⟶
x10
x5
⟶
x10
x6
⟶
x10
x7
⟶
x10
x9
)
⟶
∀ x9 .
x9
⊆
x8
⟶
atleastp
3
x9
⟶
∀ x10 : ο .
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x2
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x3
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x3
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x3
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x3
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x4
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x3
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x3
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x3
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x4
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x4
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x4
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x4
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x4
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x4
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x5
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
x10
(proof)
Known
In_3_4
In_3_4
:
3
∈
4
Known
nat_4
nat_4
:
nat_p
4
Theorem
c14f6..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
(
∀ x9 .
x9
∈
x8
⟶
∀ x10 :
ι → ο
.
x10
x0
⟶
x10
x1
⟶
x10
x2
⟶
x10
x3
⟶
x10
x4
⟶
x10
x5
⟶
x10
x6
⟶
x10
x7
⟶
x10
x9
)
⟶
∀ x9 .
x9
⊆
x8
⟶
atleastp
4
x9
⟶
∀ x10 : ο .
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x2
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x2
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x2
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x3
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x2
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x3
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x4
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x4
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x4
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x3
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x3
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x3
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x4
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
x10
(proof)