Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCit../12212..
PUXaS../de5a7..
vout
PrCit../fcca8.. 6.22 bars
TMFRb../a07a7.. ownership of c14f6.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMNwA../fb553.. ownership of 588e7.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMMwQ../03c50.. ownership of a6a5a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMQtC../71b34.. ownership of 5ec2a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMWut../dcbdd.. ownership of ad7a7.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMbCq../a5826.. ownership of 1ed5d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUbtM../f3b62.. doc published by Pr4zB..
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)
Definition atleastpatleastp := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . inj x0 x1 x3x2)x2
Param ordsuccordsucc : ιι
Known In_0_2In_0_2 : 02
Known In_1_2In_1_2 : 12
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Known neq_1_0neq_1_0 : 1 = 0∀ x0 : ο . x0
Theorem ad7a7.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 . (∀ x9 . x9x8∀ x10 : ι → ο . x10 x0x10 x1x10 x2x10 x3x10 x4x10 x5x10 x6x10 x7x10 x9)∀ x9 . x9x8atleastp 2 x9∀ x10 : ο . (x0x9x1x9x10)(x0x9x2x9x10)(x1x9x2x9x10)(x0x9x3x9x10)(x1x9x3x9x10)(x2x9x3x9x10)(x0x9x4x9x10)(x1x9x4x9x10)(x2x9x4x9x10)(x3x9x4x9x10)(x0x9x5x9x10)(x1x9x5x9x10)(x2x9x5x9x10)(x3x9x5x9x10)(x4x9x5x9x10)(x0x9x6x9x10)(x1x9x6x9x10)(x2x9x6x9x10)(x3x9x6x9x10)(x4x9x6x9x10)(x5x9x6x9x10)(x0x9x7x9x10)(x1x9x7x9x10)(x2x9x7x9x10)(x3x9x7x9x10)(x4x9x7x9x10)(x5x9x7x9x10)(x6x9x7x9x10)x10 (proof)
Param setminussetminus : ιιι
Param SingSing : ιι
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known SingISingI : ∀ x0 . x0Sing x0
Known In_2_3In_2_3 : 23
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Param nat_pnat_p : ιο
Known nat_transnat_trans : ∀ x0 . nat_p x0∀ x1 . x1x0x1x0
Known nat_3nat_3 : nat_p 3
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1x0
Theorem a6a5a.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 . (∀ x9 . x9x8∀ x10 : ι → ο . x10 x0x10 x1x10 x2x10 x3x10 x4x10 x5x10 x6x10 x7x10 x9)∀ x9 . x9x8atleastp 3 x9∀ x10 : ο . (x0x9x1x9x2x9x10)(x0x9x1x9x3x9x10)(x0x9x2x9x3x9x10)(x1x9x2x9x3x9x10)(x0x9x1x9x4x9x10)(x0x9x2x9x4x9x10)(x1x9x2x9x4x9x10)(x0x9x3x9x4x9x10)(x1x9x3x9x4x9x10)(x2x9x3x9x4x9x10)(x0x9x1x9x5x9x10)(x0x9x2x9x5x9x10)(x1x9x2x9x5x9x10)(x0x9x3x9x5x9x10)(x1x9x3x9x5x9x10)(x2x9x3x9x5x9x10)(x0x9x4x9x5x9x10)(x1x9x4x9x5x9x10)(x2x9x4x9x5x9x10)(x3x9x4x9x5x9x10)(x0x9x1x9x6x9x10)(x0x9x2x9x6x9x10)(x1x9x2x9x6x9x10)(x0x9x3x9x6x9x10)(x1x9x3x9x6x9x10)(x2x9x3x9x6x9x10)(x0x9x4x9x6x9x10)(x1x9x4x9x6x9x10)(x2x9x4x9x6x9x10)(x3x9x4x9x6x9x10)(x0x9x5x9x6x9x10)(x1x9x5x9x6x9x10)(x2x9x5x9x6x9x10)(x3x9x5x9x6x9x10)(x4x9x5x9x6x9x10)(x0x9x1x9x7x9x10)(x0x9x2x9x7x9x10)(x1x9x2x9x7x9x10)(x0x9x3x9x7x9x10)(x1x9x3x9x7x9x10)(x2x9x3x9x7x9x10)(x0x9x4x9x7x9x10)(x1x9x4x9x7x9x10)(x2x9x4x9x7x9x10)(x3x9x4x9x7x9x10)(x0x9x5x9x7x9x10)(x1x9x5x9x7x9x10)(x2x9x5x9x7x9x10)(x3x9x5x9x7x9x10)(x4x9x5x9x7x9x10)(x0x9x6x9x7x9x10)(x1x9x6x9x7x9x10)(x2x9x6x9x7x9x10)(x3x9x6x9x7x9x10)(x4x9x6x9x7x9x10)(x5x9x6x9x7x9x10)x10 (proof)
Known In_3_4In_3_4 : 34
Known nat_4nat_4 : nat_p 4
Theorem c14f6.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 . (∀ x9 . x9x8∀ x10 : ι → ο . x10 x0x10 x1x10 x2x10 x3x10 x4x10 x5x10 x6x10 x7x10 x9)∀ x9 . x9x8atleastp 4 x9∀ x10 : ο . (x0x9x1x9x2x9x3x9x10)(x0x9x1x9x2x9x4x9x10)(x0x9x1x9x3x9x4x9x10)(x0x9x2x9x3x9x4x9x10)(x1x9x2x9x3x9x4x9x10)(x0x9x1x9x2x9x5x9x10)(x0x9x1x9x3x9x5x9x10)(x0x9x2x9x3x9x5x9x10)(x1x9x2x9x3x9x5x9x10)(x0x9x1x9x4x9x5x9x10)(x0x9x2x9x4x9x5x9x10)(x1x9x2x9x4x9x5x9x10)(x0x9x3x9x4x9x5x9x10)(x1x9x3x9x4x9x5x9x10)(x2x9x3x9x4x9x5x9x10)(x0x9x1x9x2x9x6x9x10)(x0x9x1x9x3x9x6x9x10)(x0x9x2x9x3x9x6x9x10)(x1x9x2x9x3x9x6x9x10)(x0x9x1x9x4x9x6x9x10)(x0x9x2x9x4x9x6x9x10)(x1x9x2x9x4x9x6x9x10)(x0x9x3x9x4x9x6x9x10)(x1x9x3x9x4x9x6x9x10)(x2x9x3x9x4x9x6x9x10)(x0x9x1x9x5x9x6x9x10)(x0x9x2x9x5x9x6x9x10)(x1x9x2x9x5x9x6x9x10)(x0x9x3x9x5x9x6x9x10)(x1x9x3x9x5x9x6x9x10)(x2x9x3x9x5x9x6x9x10)(x0x9x4x9x5x9x6x9x10)(x1x9x4x9x5x9x6x9x10)(x2x9x4x9x5x9x6x9x10)(x3x9x4x9x5x9x6x9x10)(x0x9x1x9x2x9x7x9x10)(x0x9x1x9x3x9x7x9x10)(x0x9x2x9x3x9x7x9x10)(x1x9x2x9x3x9x7x9x10)(x0x9x1x9x4x9x7x9x10)(x0x9x2x9x4x9x7x9x10)(x1x9x2x9x4x9x7x9x10)(x0x9x3x9x4x9x7x9x10)(x1x9x3x9x4x9x7x9x10)(x2x9x3x9x4x9x7x9x10)(x0x9x1x9x5x9x7x9x10)(x0x9x2x9x5x9x7x9x10)(x1x9x2x9x5x9x7x9x10)(x0x9x3x9x5x9x7x9x10)(x1x9x3x9x5x9x7x9x10)(x2x9x3x9x5x9x7x9x10)(x0x9x4x9x5x9x7x9x10)(x1x9x4x9x5x9x7x9x10)(x2x9x4x9x5x9x7x9x10)(x3x9x4x9x5x9x7x9x10)(x0x9x1x9x6x9x7x9x10)(x0x9x2x9x6x9x7x9x10)(x1x9x2x9x6x9x7x9x10)(x0x9x3x9x6x9x7x9x10)(x1x9x3x9x6x9x7x9x10)(x2x9x3x9x6x9x7x9x10)(x0x9x4x9x6x9x7x9x10)(x1x9x4x9x6x9x7x9x10)(x2x9x4x9x6x9x7x9x10)(x3x9x4x9x6x9x7x9x10)(x0x9x5x9x6x9x7x9x10)(x1x9x5x9x6x9x7x9x10)(x2x9x5x9x6x9x7x9x10)(x3x9x5x9x6x9x7x9x10)(x4x9x5x9x6x9x7x9x10)x10 (proof)