Search for blocks/addresses/...
Proofgold Asset
asset id
e5210595973360b75719bbd68b740eac63eaadcc4c3c37d7298d1f1ed29aeca6
asset hash
fdc537003f02dfc046a0846bda017190e813c592ccae487bfc15aa8e106440e9
bday / block
24812
tx
ef774..
preasset
doc published by
Pr5Zc..
Known
3e03a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
(
x1
x2
x3
)
x4
=
x1
x2
(
x1
x3
x4
)
)
⟶
∀ x2 x3 x4 x5 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
(
x1
x2
x3
)
(
x1
x4
x5
)
=
x1
x2
(
x1
x3
(
x1
x4
x5
)
)
Theorem
b3b19..
:
∀ x0 :
ι → ο
.
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x1
x3
x4
)
)
⟶
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x2
x3
x4
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
x3
(
x1
x4
x5
)
=
x1
x4
(
x1
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
(
x1
x3
x4
)
x5
=
x1
x3
(
x1
x4
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
x3
(
x1
x4
x5
)
=
x1
(
x2
x3
x4
)
(
x2
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
(
x1
x3
x4
)
x5
=
x1
(
x2
x3
x5
)
(
x2
x4
x5
)
)
⟶
∀ x3 x4 x5 x6 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x2
(
x1
x3
x4
)
(
x1
x5
x6
)
=
x1
(
x2
x3
x5
)
(
x1
(
x2
x3
x6
)
(
x1
(
x2
x4
x5
)
(
x2
x4
x6
)
)
)
(proof)
Known
547c4..
:
∀ x0 :
ι → ο
.
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x1
x3
x4
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
(
x1
x3
x4
)
x5
=
x1
(
x2
x3
x5
)
(
x2
x4
x5
)
)
⟶
∀ x3 x4 x5 x6 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x2
(
x1
x3
(
x1
x4
x5
)
)
x6
=
x1
(
x2
x3
x6
)
(
x1
(
x2
x4
x6
)
(
x2
x5
x6
)
)
Known
aaa2e..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
(
x1
x2
x3
)
x4
=
x1
x2
(
x1
x3
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x1
(
x1
x2
(
x1
x3
x4
)
)
(
x1
x5
(
x1
x6
x7
)
)
=
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
x7
)
)
)
)
Known
f7707..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
x6
)
)
)
=
x1
x4
(
x1
x2
(
x1
x5
(
x1
x3
x6
)
)
)
Theorem
5a15a..
:
∀ x0 :
ι → ο
.
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x1
x3
x4
)
)
⟶
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x2
x3
x4
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
x3
(
x1
x4
x5
)
=
x1
x4
(
x1
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
(
x1
x3
x4
)
x5
=
x1
x3
(
x1
x4
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
x3
(
x1
x4
x5
)
=
x1
(
x2
x3
x4
)
(
x2
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
(
x1
x3
x4
)
x5
=
x1
(
x2
x3
x5
)
(
x2
x4
x5
)
)
⟶
∀ x3 x4 x5 x6 x7 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x2
(
x1
x3
(
x1
x4
x5
)
)
(
x1
x6
x7
)
=
x1
(
x2
x3
x6
)
(
x1
(
x2
x3
x7
)
(
x1
(
x2
x4
x6
)
(
x1
(
x2
x4
x7
)
(
x1
(
x2
x5
x6
)
(
x2
x5
x7
)
)
)
)
)
(proof)
Known
81c99..
:
∀ x0 :
ι → ο
.
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x1
x3
x4
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
(
x1
x3
x4
)
x5
=
x1
(
x2
x3
x5
)
(
x2
x4
x5
)
)
⟶
∀ x3 x4 x5 x6 x7 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x2
(
x1
x3
(
x1
x4
(
x1
x5
x6
)
)
)
x7
=
x1
(
x2
x3
x7
)
(
x1
(
x2
x4
x7
)
(
x1
(
x2
x5
x7
)
(
x2
x6
x7
)
)
)
Known
a227c..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
(
x1
x2
x3
)
x4
=
x1
x2
(
x1
x3
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
(
x1
x2
(
x1
x3
(
x1
x4
x5
)
)
)
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
=
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
Known
456fe..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
=
x1
x5
(
x1
x2
(
x1
x6
(
x1
x3
(
x1
x7
(
x1
x4
x8
)
)
)
)
)
Theorem
754ba..
:
∀ x0 :
ι → ο
.
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x1
x3
x4
)
)
⟶
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x2
x3
x4
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
x3
(
x1
x4
x5
)
=
x1
x4
(
x1
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
(
x1
x3
x4
)
x5
=
x1
x3
(
x1
x4
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
x3
(
x1
x4
x5
)
=
x1
(
x2
x3
x4
)
(
x2
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
(
x1
x3
x4
)
x5
=
x1
(
x2
x3
x5
)
(
x2
x4
x5
)
)
⟶
∀ x3 x4 x5 x6 x7 x8 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x2
(
x1
x3
(
x1
x4
(
x1
x5
x6
)
)
)
(
x1
x7
x8
)
=
x1
(
x2
x3
x7
)
(
x1
(
x2
x3
x8
)
(
x1
(
x2
x4
x7
)
(
x1
(
x2
x4
x8
)
(
x1
(
x2
x5
x7
)
(
x1
(
x2
x5
x8
)
(
x1
(
x2
x6
x7
)
(
x2
x6
x8
)
)
)
)
)
)
)
(proof)
Known
880a1..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
x0
(
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
(
x1
x9
x10
)
)
)
)
)
)
)
)
Known
2a50e..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
(
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
x7
)
)
)
)
)
Known
e11b7..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
(
x1
x2
(
x1
x3
x4
)
)
Theorem
bbb38..
:
∀ x0 :
ι → ο
.
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x1
x3
x4
)
)
⟶
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x2
x3
x4
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
x3
(
x1
x4
x5
)
=
x1
x4
(
x1
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
(
x1
x3
x4
)
x5
=
x1
x3
(
x1
x4
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
x3
(
x1
x4
x5
)
=
x1
(
x2
x3
x4
)
(
x2
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
(
x1
x3
x4
)
x5
=
x1
(
x2
x3
x5
)
(
x2
x4
x5
)
)
⟶
∀ x3 x4 x5 x6 x7 x8 x9 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x2
(
x1
x3
(
x1
x4
(
x1
x5
x6
)
)
)
(
x1
x7
(
x1
x8
x9
)
)
=
x1
(
x2
x3
x7
)
(
x1
(
x2
x3
x8
)
(
x1
(
x2
x3
x9
)
(
x1
(
x2
x4
x7
)
(
x1
(
x2
x4
x8
)
(
x1
(
x2
x4
x9
)
(
x1
(
x2
x5
x7
)
(
x1
(
x2
x5
x8
)
(
x1
(
x2
x5
x9
)
(
x1
(
x2
x6
x7
)
(
x1
(
x2
x6
x8
)
(
x2
x6
x9
)
)
)
)
)
)
)
)
)
)
)
(proof)
Known
2c5ad..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x0
x13
⟶
x0
(
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
(
x1
x9
(
x1
x10
(
x1
x11
(
x1
x12
x13
)
)
)
)
)
)
)
)
)
)
)
Known
18faf..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x0
(
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
)
Known
25618..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
∀ x2 x3 x4 x5 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
(
x1
x2
(
x1
x3
(
x1
x4
x5
)
)
)
Theorem
00c54..
:
∀ x0 :
ι → ο
.
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x1
x3
x4
)
)
⟶
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x2
x3
x4
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
x3
(
x1
x4
x5
)
=
x1
x4
(
x1
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
(
x1
x3
x4
)
x5
=
x1
x3
(
x1
x4
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
x3
(
x1
x4
x5
)
=
x1
(
x2
x3
x4
)
(
x2
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
(
x1
x3
x4
)
x5
=
x1
(
x2
x3
x5
)
(
x2
x4
x5
)
)
⟶
∀ x3 x4 x5 x6 x7 x8 x9 x10 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
x2
(
x1
x3
(
x1
x4
(
x1
x5
x6
)
)
)
(
x1
x7
(
x1
x8
(
x1
x9
x10
)
)
)
=
x1
(
x2
x3
x7
)
(
x1
(
x2
x3
x8
)
(
x1
(
x2
x3
x9
)
(
x1
(
x2
x3
x10
)
(
x1
(
x2
x4
x7
)
(
x1
(
x2
x4
x8
)
(
x1
(
x2
x4
x9
)
(
x1
(
x2
x4
x10
)
(
x1
(
x2
x5
x7
)
(
x1
(
x2
x5
x8
)
(
x1
(
x2
x5
x9
)
(
x1
(
x2
x5
x10
)
(
x1
(
x2
x6
x7
)
(
x1
(
x2
x6
x8
)
(
x1
(
x2
x6
x9
)
(
x2
x6
x10
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
a7a6a..
:
∀ x0 :
ι → ο
.
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x1
x3
x4
)
)
⟶
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x2
x3
x4
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
x3
(
x1
x4
x5
)
=
x1
x4
(
x1
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
(
x1
x3
x4
)
x5
=
x1
x3
(
x1
x4
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
x3
(
x1
x4
x5
)
=
x1
(
x2
x3
x4
)
(
x2
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
(
x1
x3
x4
)
x5
=
x1
(
x2
x3
x5
)
(
x2
x4
x5
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
x0
x4
⟶
x3
x4
=
x2
x4
x4
)
⟶
∀ x4 x5 x6 x7 .
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x3
(
x1
x4
(
x1
x5
(
x1
x6
x7
)
)
)
=
x1
(
x3
x4
)
(
x1
(
x2
x4
x5
)
(
x1
(
x2
x4
x6
)
(
x1
(
x2
x4
x7
)
(
x1
(
x2
x5
x4
)
(
x1
(
x3
x5
)
(
x1
(
x2
x5
x6
)
(
x1
(
x2
x5
x7
)
(
x1
(
x2
x6
x4
)
(
x1
(
x2
x6
x5
)
(
x1
(
x3
x6
)
(
x1
(
x2
x6
x7
)
(
x1
(
x2
x7
x4
)
(
x1
(
x2
x7
x5
)
(
x1
(
x2
x7
x6
)
(
x3
x7
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Known
0d20b..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
x6
)
)
)
=
x1
x4
(
x1
x5
(
x1
x2
(
x1
x3
x6
)
)
)
Known
8be1c..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x4
(
x1
x2
(
x1
x8
(
x1
x6
(
x1
x3
(
x1
x5
(
x1
x7
x9
)
)
)
)
)
)
Known
474fb..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
(
x1
x2
x3
)
x4
=
x1
x2
(
x1
x3
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
x0
x17
⟶
x1
(
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
)
(
x1
x10
(
x1
x11
(
x1
x12
(
x1
x13
(
x1
x14
(
x1
x15
(
x1
x16
x17
)
)
)
)
)
)
)
=
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
(
x1
x9
(
x1
x10
(
x1
x11
(
x1
x12
(
x1
x13
(
x1
x14
(
x1
x15
(
x1
x16
x17
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Known
1d9b9..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x5
(
x1
x8
(
x1
x4
(
x1
x2
(
x1
x7
(
x1
x6
(
x1
x3
x9
)
)
)
)
)
)
Known
d3eb2..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
(
x1
x9
x10
)
)
)
)
)
)
)
=
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
(
x1
x9
(
x1
x2
x10
)
)
)
)
)
)
)
Known
4c672..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
(
x1
x9
(
x1
x10
(
x1
x11
x12
)
)
)
)
)
)
)
)
)
=
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
(
x1
x9
(
x1
x10
(
x1
x11
(
x1
x2
x12
)
)
)
)
)
)
)
)
)
Known
7230f..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
=
x1
x6
(
x1
x7
(
x1
x4
(
x1
x2
(
x1
x3
(
x1
x5
x8
)
)
)
)
)
Known
c0ce9..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x5
(
x1
x7
(
x1
x6
(
x1
x3
(
x1
x4
x9
)
)
)
)
)
)
Known
ac781..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
x6
)
)
)
=
x1
x5
(
x1
x3
(
x1
x4
(
x1
x2
x6
)
)
)
Known
d817d..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
x7
)
)
)
)
=
x1
x4
(
x1
x2
(
x1
x5
(
x1
x6
(
x1
x3
x7
)
)
)
)
Known
495ba..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x0
x13
⟶
x0
x14
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
(
x1
x9
(
x1
x10
(
x1
x11
(
x1
x12
(
x1
x13
x14
)
)
)
)
)
)
)
)
)
)
)
=
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
(
x1
x9
(
x1
x10
(
x1
x11
(
x1
x12
(
x1
x13
(
x1
x2
x14
)
)
)
)
)
)
)
)
)
)
)
Known
baf24..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
x7
)
)
)
)
=
x1
x4
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x3
x7
)
)
)
)
Known
c0c54..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
=
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x2
x8
)
)
)
)
)
Known
50b3f..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x5
(
x1
x6
(
x1
x2
(
x1
x4
(
x1
x7
x9
)
)
)
)
)
)
Known
93eac..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
x6
)
)
)
=
x1
x3
(
x1
x4
(
x1
x5
(
x1
x2
x6
)
)
)
Known
df420..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x5
(
x1
x8
(
x1
x2
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x7
x9
)
)
)
)
)
)
Known
cbdc2..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
(
x1
x2
x9
)
)
)
)
)
)
Known
a09f2..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x6
(
x1
x2
(
x1
x7
(
x1
x3
(
x1
x4
(
x1
x8
(
x1
x5
x9
)
)
)
)
)
)
Theorem
88d93..
:
∀ x0 :
ι → ο
.
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x1
x3
x4
)
)
⟶
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x2
x3
x4
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
x3
(
x1
x4
x5
)
=
x1
x4
(
x1
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
(
x1
x3
x4
)
x5
=
x1
x3
(
x1
x4
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
x3
(
x1
x4
x5
)
=
x1
(
x2
x3
x4
)
(
x2
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
(
x1
x3
x4
)
x5
=
x1
(
x2
x3
x5
)
(
x2
x4
x5
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
x0
x4
⟶
x3
x4
=
x2
x4
x4
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
x0
x5
⟶
x0
(
x4
x5
)
)
⟶
(
∀ x5 .
x0
x5
⟶
x4
(
x4
x5
)
=
x5
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x1
(
x4
x5
)
(
x1
x5
x6
)
=
x6
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x1
x5
(
x1
(
x4
x5
)
x6
)
=
x6
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x2
(
x4
x5
)
x6
=
x4
(
x2
x5
x6
)
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x2
x5
(
x4
x6
)
=
x4
(
x2
x5
x6
)
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x2
x5
x6
=
x2
x6
x5
)
⟶
(
∀ x5 x6 x7 x8 .
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x2
(
x2
x5
x6
)
(
x2
x7
x8
)
=
x2
(
x2
x5
x7
)
(
x2
x6
x8
)
)
⟶
∀ x5 x6 x7 x8 x9 x10 x11 x12 .
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x2
(
x1
(
x3
x5
)
(
x1
(
x3
x6
)
(
x1
(
x3
x7
)
(
x3
x8
)
)
)
)
(
x1
(
x3
x9
)
(
x1
(
x3
x10
)
(
x1
(
x3
x11
)
(
x3
x12
)
)
)
)
=
x1
(
x3
(
x1
(
x2
x5
x10
)
(
x1
(
x2
x6
x9
)
(
x1
(
x2
x7
x12
)
(
x4
(
x2
x8
x11
)
)
)
)
)
)
(
x1
(
x3
(
x1
(
x2
x5
x11
)
(
x1
(
x4
(
x2
x6
x12
)
)
(
x1
(
x2
x7
x9
)
(
x2
x8
x10
)
)
)
)
)
(
x1
(
x3
(
x1
(
x2
x5
x12
)
(
x1
(
x2
x6
x11
)
(
x1
(
x4
(
x2
x7
x10
)
)
(
x2
x8
x9
)
)
)
)
)
(
x3
(
x1
(
x2
x5
x9
)
(
x1
(
x4
(
x2
x6
x10
)
)
(
x1
(
x4
(
x2
x7
x11
)
)
(
x4
(
x2
x8
x12
)
)
)
)
)
)
)
)
(proof)