Search for blocks/addresses/...

Proofgold Address

address
PUgKvczU84UJtmNfmfkXDoZ5brBWuZBhz9M
total
0
mg
-
conjpub
-
current assets
cf37e../7bb71.. bday: 19831 doc published by Pr4zB..
Param bijbij : ιι(ιι) → ο
Definition equipequip := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . bij x0 x1 x3x2)x2
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Param binunionbinunion : ιιι
Param setsumsetsum : ιιι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known bijEbijE : ∀ x0 x1 . ∀ x2 : ι → ι . bij x0 x1 x2∀ x3 : ο . ((∀ x4 . x4x0x2 x4x1)(∀ x4 . x4x0∀ x5 . x5x0x2 x4 = x2 x5x4 = x5)(∀ x4 . x4x1∀ x5 : ο . (∀ x6 . and (x6x0) (x2 x6 = x4)x5)x5)x3)x3
Param If_iIf_i : οιιι
Param Inj0Inj0 : ιι
Param Inj1Inj1 : ιι
Known bijIbijI : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x0x2 x3x1)(∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)(∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)bij x0 x1 x2
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Known Inj0_setsumInj0_setsum : ∀ x0 x1 x2 . x2x0Inj0 x2setsum x0 x1
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Known Inj1_setsumInj1_setsum : ∀ x0 x1 x2 . x2x1Inj1 x2setsum x0 x1
Known Inj0_injInj0_inj : ∀ x0 x1 . Inj0 x0 = Inj0 x1x0 = x1
Known FalseEFalseE : False∀ x0 : ο . x0
Known Inj0_Inj1_neqInj0_Inj1_neq : ∀ x0 x1 . Inj0 x0 = Inj1 x1∀ x2 : ο . x2
Known Inj1_injInj1_inj : ∀ x0 x1 . Inj1 x0 = Inj1 x1x0 = x1
Known f4c7c.. : ∀ x0 x1 . ∀ x2 : ι → ο . (∀ x3 . x3x0x2 (Inj0 x3))(∀ x3 . x3x1x2 (Inj1 x3))∀ x3 . x3setsum x0 x1x2 x3
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Theorem d778e.. : ∀ x0 x1 x2 x3 . equip x0 x2equip x1 x3(∀ x4 . x4x0nIn x4 x1)equip (binunion x0 x1) (setsum x2 x3) (proof)
Param add_natadd_nat : ιιι
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition u4 := ordsucc u3
Param nat_pnat_p : ιο
Known add_nat_SRadd_nat_SR : ∀ x0 x1 . nat_p x1add_nat x0 (ordsucc x1) = ordsucc (add_nat x0 x1)
Known nat_0nat_0 : nat_p 0
Known add_nat_0Radd_nat_0R : ∀ x0 . add_nat x0 0 = x0
Theorem 480b2.. : add_nat u3 u1 = u4 (proof)
Definition u5 := ordsucc u4
Definition u6 := ordsucc u5
Theorem 561b1.. : add_nat u5 u1 = u6 (proof)
Definition u7 := ordsucc u6
Known nat_1nat_1 : nat_p 1
Theorem bd216.. : add_nat u5 u2 = u7 (proof)
Definition u8 := ordsucc u7
Known nat_2nat_2 : nat_p 2
Theorem e705e.. : add_nat u5 u3 = u8 (proof)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param setminussetminus : ιιι
Param binintersectbinintersect : ιιι
Known Subq_binintersection_eqSubq_binintersection_eq : ∀ x0 x1 . x0x1 = (binintersect x0 x1 = x0)
Known a8a92.. : ∀ x0 x1 . x0 = binunion (setminus x0 x1) (binintersect x0 x1)
Known binunion_combinunion_com : ∀ x0 x1 . binunion x0 x1 = binunion x1 x0
Known binintersect_combinintersect_com : ∀ x0 x1 . binintersect x0 x1 = binintersect x1 x0
Theorem 80238.. : ∀ x0 x1 . x0x1x1 = binunion x0 (setminus x1 x0) (proof)
Param UPairUPair : ιιι
Param SingSing : ιι
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Known UPairEUPairE : ∀ x0 x1 x2 . x0UPair x1 x2or (x0 = x1) (x0 = x2)
Known SingISingI : ∀ x0 . x0Sing x0
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known UPairI1UPairI1 : ∀ x0 x1 . x0UPair x0 x1
Known UPairI2UPairI2 : ∀ x0 x1 . x1UPair x0 x1
Theorem cbaf1.. : ∀ x0 x1 . UPair x0 x1 = binunion (Sing x0) (Sing x1) (proof)
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Known e8bc0..equip_adjoin_ordsucc : ∀ x0 x1 x2 . nIn x2 x1equip x0 x1equip (ordsucc x0) (binunion x1 (Sing x2))
Known 5169f..equip_Sing_1 : ∀ x0 . equip (Sing x0) u1
Theorem ced33.. : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)equip (UPair x0 x1) u2 (proof)
Definition SetAdjoinSetAdjoin := λ x0 x1 . binunion x0 (Sing x1)
Theorem 76c0f.. : ∀ x0 x1 x2 x3 . x3SetAdjoin (UPair x0 x1) x2∀ x4 : ι → ο . x4 x0x4 x1x4 x2x4 x3 (proof)
Theorem 1aece.. : ∀ x0 x1 x2 x3 x4 . x4SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3∀ x5 : ι → ο . x5 x0x5 x1x5 x2x5 x3x5 x4 (proof)
Theorem a515c.. : ∀ x0 x1 x2 . (x0 = x1∀ x3 : ο . x3)(x0 = x2∀ x3 : ο . x3)(x1 = x2∀ x3 : ο . x3)equip (SetAdjoin (UPair x0 x1) x2) u3 (proof)
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Theorem d9e1e.. : ∀ x0 x1 x2 x3 . (x0 = x1∀ x4 : ο . x4)(x0 = x2∀ x4 : ο . x4)(x0 = x3∀ x4 : ο . x4)(x1 = x2∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)equip (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) u4 (proof)
Definition u9 := ordsucc u8
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Theorem bf767.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x0 x3 x4))x1)x1)∀ x1 . x1u9∀ x2 . x2u9∀ x3 . x3u9x0 x1 x2x0 x1 x3x0 x2 x3∀ x4 : ο . (x1 = x2x4)(x1 = x3x4)(x2 = x3x4)x4 (proof)
Theorem 0728d.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1)∀ x1 . x1u9∀ x2 . x2u9∀ x3 . x3u9∀ x4 . x4u9not (x0 x1 x2)not (x0 x1 x3)not (x0 x1 x4)not (x0 x2 x3)not (x0 x2 x4)not (x0 x3 x4)∀ x5 : ο . (x1 = x2x5)(x1 = x3x5)(x1 = x4x5)(x2 = x3x5)(x2 = x4x5)(x3 = x4x5)x5 (proof)
Param atleastpatleastp : ιιο
Definition TwoRamseyPropTwoRamseyProp := λ x0 x1 x2 . ∀ x3 : ι → ι → ο . (∀ x4 x5 . x3 x4 x5x3 x5 x4)or (∀ x4 : ο . (∀ x5 . and (x5x2) (and (equip x0 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)x3 x6 x7))x4)x4) (∀ x4 : ο . (∀ x5 . and (x5x2) (and (equip x1 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)not (x3 x6 x7)))x4)x4)
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known binunion_Subq_minbinunion_Subq_min : ∀ x0 x1 x2 . x0x2x1x2binunion x0 x1x2
Known equip_traequip_tra : ∀ x0 x1 x2 . equip x0 x1equip x1 x2equip x0 x2
Known c88e0.. : ∀ x0 x1 x2 x3 . nat_p x0nat_p x1equip x0 x2equip x1 x3equip (add_nat x0 x1) (setsum x2 x3)
Known nat_3nat_3 : nat_p 3
Known equip_refequip_ref : ∀ x0 . equip x0 x0
Known 46dcf.. : ∀ x0 x1 x2 x3 . atleastp x2 x3TwoRamseyProp x0 x1 x2TwoRamseyProp x0 x1 x3
Known TwoRamseyProp_3_3_6TwoRamseyProp_3_3_6 : TwoRamseyProp 3 3 6
Param SepSep : ι(ιο) → ι
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known 48e0f.. : ∀ x0 . nat_p x0∀ x1 . or (atleastp x1 x0) (atleastp (ordsucc x0) x1)
Known nat_5nat_5 : nat_p 5
Known 4fb58..Pigeonhole_not_atleastp_ordsucc : ∀ x0 . nat_p x0not (atleastp (ordsucc x0) x0)
Known nat_8nat_8 : nat_p 8
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Known 385ef.. : ∀ x0 x1 x2 x3 . atleastp x0 x2atleastp x1 x3(∀ x4 . x4x0nIn x4 x1)atleastp (binunion x0 x1) (setsum x2 x3)
Known setminusE2setminusE2 : ∀ x0 x1 x2 . x2setminus x0 x1nIn x2 x1
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known d03c6.. : ∀ x0 . atleastp u4 x0∀ x1 : ο . (∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0(x2 = x3∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x2 = x5∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)(x3 = x5∀ x6 : ο . x6)(x4 = x5∀ x6 : ο . x6)x1)x1
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known SepE2SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x1 x2
Known Sep_SubqSep_Subq : ∀ x0 . ∀ x1 : ι → ο . Sep x0 x1x0
Theorem e5c2b.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (or (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x0 x3 x4))x1)x1) (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1))∀ x1 . x1u9∀ x2 : ο . (∀ x3 . x3u9∀ x4 . x4u9∀ x5 . x5u9(x1 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x1 = x5∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)(x3 = x5∀ x6 : ο . x6)(x4 = x5∀ x6 : ο . x6)x0 x1 x3x0 x1 x4x0 x1 x5x2)x2 (proof)
Theorem e041c.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (or (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x0 x3 x4))x1)x1) (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1))∀ x1 . x1u9∀ x2 : ο . (∀ x3 . x3u9∀ x4 . x4u9∀ x5 . x5u9(x1 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x1 = x5∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)(x3 = x5∀ x6 : ο . x6)(x4 = x5∀ x6 : ο . x6)x0 x1 x3x0 x1 x4x0 x1 x5not (x0 x3 x4)not (x0 x3 x5)not (x0 x4 x5)(∀ x6 . x6u9x0 x1 x6x6SetAdjoin (SetAdjoin (UPair x1 x3) x4) x5)x2)x2 (proof)
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Theorem f1644.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (or (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x0 x3 x4))x1)x1) (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1))∀ x1 . x1u9∀ x2 . x2u9(x1 = x2∀ x3 : ο . x3)x0 x1 x2∀ x3 : ο . (∀ x4 . x4u9∀ x5 . x5u9(x1 = x4∀ x6 : ο . x6)(x1 = x5∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x2 = x5∀ x6 : ο . x6)(x4 = x5∀ x6 : ο . x6)x0 x1 x4x0 x1 x5not (x0 x2 x4)not (x0 x2 x5)not (x0 x4 x5)(∀ x6 . x6u9x0 x1 x6x6SetAdjoin (SetAdjoin (UPair x1 x2) x4) x5)x3)x3 (proof)
Theorem 8455a.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (or (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x0 x3 x4))x1)x1) (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1))∀ x1 . x1u9∀ x2 . x2u9∀ x3 . x3u9(x1 = x2∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)x0 x1 x2x0 x1 x3∀ x4 : ο . (∀ x5 . x5u9(x1 = x5∀ x6 : ο . x6)(x2 = x5∀ x6 : ο . x6)(x3 = x5∀ x6 : ο . x6)x0 x1 x5not (x0 x2 x5)not (x0 x3 x5)(∀ x6 . x6u9x0 x1 x6x6SetAdjoin (SetAdjoin (UPair x1 x2) x3) x5)x4)x4 (proof)
Theorem c62d8.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (or (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x0 x3 x4))x1)x1) (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1))∀ x1 . x1u9∀ x2 . x2u9∀ x3 . x3u9∀ x4 . x4u9(x1 = x2∀ x5 : ο . x5)(x1 = x3∀ x5 : ο . x5)(x1 = x4∀ x5 : ο . x5)(x2 = x3∀ x5 : ο . x5)(x2 = x4∀ x5 : ο . x5)(x3 = x4∀ x5 : ο . x5)x0 x1 x2x0 x1 x3x0 x1 x4∀ x5 . x5u9x0 x1 x5x5SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4 (proof)

previous assets