∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2 ⟶ x0 x2 x1) ⟶ not (or (∃ x1 . and (x1 ⊆ u9) (and (equip u3 x1) (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ x0 x3 x4))) (∃ x1 . and (x1 ⊆ u9) (and (equip u4 x1) (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ not (x0 x3 x4))))) ⟶ ∀ x1 . x1 ∈ u9 ⟶ ∀ x2 . x2 ∈ u9 ⟶ ∀ x3 . x3 ∈ u9 ⟶ ∀ x4 . x4 ∈ u9 ⟶ ∀ x5 . x5 ∈ u9 ⟶ (x1 = x2 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x5 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x5 ⟶ ∀ x6 : ο . x6) ⟶ (x3 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x3 = x5 ⟶ ∀ x6 : ο . x6) ⟶ (x4 = x5 ⟶ ∀ x6 : ο . x6) ⟶ x0 x1 x2 ⟶ x0 x1 x3 ⟶ x0 x1 x4 ⟶ not (x0 x2 x3) ⟶ not (x0 x2 x4) ⟶ not (x0 x3 x4) ⟶ x0 x5 x2 ⟶ x0 x5 x3 ⟶ x0 x5 x4 ⟶ False |
|