Search for blocks/addresses/...
Proofgold Address
address
PUKk14axKvLZzdpPvYg6xtSyA5AHZvaYujT
total
0
mg
-
conjpub
-
current assets
d4e99..
/
06c7b..
bday:
19915
doc published by
Pr4zB..
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
SetAdjoin
SetAdjoin
:=
λ x0 x1 .
binunion
x0
(
Sing
x1
)
Param
UPair
UPair
:
ι
→
ι
→
ι
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
1aece..
:
∀ x0 x1 x2 x3 x4 .
x4
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
⟶
∀ x5 :
ι → ο
.
x5
x0
⟶
x5
x1
⟶
x5
x2
⟶
x5
x3
⟶
x5
x4
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Theorem
3cea6..
:
∀ x0 x1 x2 x3 x4 x5 .
x5
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
⟶
∀ x6 :
ι → ο
.
x6
x0
⟶
x6
x1
⟶
x6
x2
⟶
x6
x3
⟶
x6
x4
⟶
x6
x5
(proof)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Param
equip
equip
:
ι
→
ι
→
ο
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
nat_p
nat_p
:
ι
→
ο
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Definition
atleastp
atleastp
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
inj
x0
x1
x3
⟶
x2
)
⟶
x2
Known
48e0f..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
or
(
atleastp
x1
x0
)
(
atleastp
(
ordsucc
x0
)
x1
)
Known
nat_3
nat_3
:
nat_p
3
Known
4fb58..
Pigeonhole_not_atleastp_ordsucc
:
∀ x0 .
nat_p
x0
⟶
not
(
atleastp
(
ordsucc
x0
)
x0
)
Known
nat_8
nat_8
:
nat_p
8
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Known
a8a92..
:
∀ x0 x1 .
x0
=
binunion
(
setminus
x0
x1
)
(
binintersect
x0
x1
)
Known
binintersect_com
binintersect_com
:
∀ x0 x1 .
binintersect
x0
x1
=
binintersect
x1
x0
Known
binintersect_Subq_eq_1
binintersect_Subq_eq_1
:
∀ x0 x1 .
x0
⊆
x1
⟶
binintersect
x0
x1
=
x0
Param
setsum
setsum
:
ι
→
ι
→
ι
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
385ef..
:
∀ x0 x1 x2 x3 .
atleastp
x0
x2
⟶
atleastp
x1
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
nIn
x4
x1
)
⟶
atleastp
(
binunion
x0
x1
)
(
setsum
x2
x3
)
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
5b07e..
:
∀ x0 x1 x2 x3 x4 .
(
x0
=
x1
⟶
∀ x5 : ο .
x5
)
⟶
(
x0
=
x2
⟶
∀ x5 : ο .
x5
)
⟶
(
x0
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
(
x0
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
x1
=
x2
⟶
∀ x5 : ο .
x5
)
⟶
(
x1
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
(
x1
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
x2
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
(
x2
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
equip
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
u5
Known
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
e705e..
:
add_nat
u5
u3
=
u8
Known
add_nat_com
add_nat_com
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
x0
x1
=
add_nat
x1
x0
Known
nat_5
nat_5
:
nat_p
5
Known
c88e0..
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
nat_p
x1
⟶
equip
x0
x2
⟶
equip
x1
x3
⟶
equip
(
add_nat
x0
x1
)
(
setsum
x2
x3
)
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
If_i_or
If_i_or
:
∀ x0 : ο .
∀ x1 x2 .
or
(
If_i
x0
x1
x2
=
x1
)
(
If_i
x0
x1
x2
=
x2
)
Known
In_0_3
In_0_3
:
0
∈
3
Known
In_1_3
In_1_3
:
1
∈
3
Known
In_2_3
In_2_3
:
2
∈
3
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
c62d8..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
not
(
or
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u3
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x3
x4
)
)
⟶
x1
)
⟶
x1
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u4
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x0
x3
x4
)
)
)
⟶
x1
)
⟶
x1
)
)
⟶
∀ x1 .
x1
∈
u9
⟶
∀ x2 .
x2
∈
u9
⟶
∀ x3 .
x3
∈
u9
⟶
∀ x4 .
x4
∈
u9
⟶
(
x1
=
x2
⟶
∀ x5 : ο .
x5
)
⟶
(
x1
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
(
x1
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
x2
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
(
x2
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x1
x2
⟶
x0
x1
x3
⟶
x0
x1
x4
⟶
∀ x5 .
x5
∈
u9
⟶
x0
x1
x5
⟶
x5
∈
SetAdjoin
(
SetAdjoin
(
UPair
x1
x2
)
x3
)
x4
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
neq_0_1
neq_0_1
:
0
=
1
⟶
∀ x0 : ο .
x0
Known
neq_0_2
neq_0_2
:
0
=
2
⟶
∀ x0 : ο .
x0
Known
neq_1_0
neq_1_0
:
u1
=
0
⟶
∀ x0 : ο .
x0
Known
neq_2_0
neq_2_0
:
u2
=
0
⟶
∀ x0 : ο .
x0
Known
neq_1_2
neq_1_2
:
1
=
2
⟶
∀ x0 : ο .
x0
Known
neq_2_1
neq_2_1
:
u2
=
u1
⟶
∀ x0 : ο .
x0
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
UPairI2
UPairI2
:
∀ x0 x1 .
x1
∈
UPair
x0
x1
Known
UPairI1
UPairI1
:
∀ x0 x1 .
x0
∈
UPair
x0
x1
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Known
0728d..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
not
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u4
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x0
x3
x4
)
)
)
⟶
x1
)
⟶
x1
)
⟶
∀ x1 .
x1
∈
u9
⟶
∀ x2 .
x2
∈
u9
⟶
∀ x3 .
x3
∈
u9
⟶
∀ x4 .
x4
∈
u9
⟶
not
(
x0
x1
x2
)
⟶
not
(
x0
x1
x3
)
⟶
not
(
x0
x1
x4
)
⟶
not
(
x0
x2
x3
)
⟶
not
(
x0
x2
x4
)
⟶
not
(
x0
x3
x4
)
⟶
∀ x5 : ο .
(
x1
=
x2
⟶
x5
)
⟶
(
x1
=
x3
⟶
x5
)
⟶
(
x1
=
x4
⟶
x5
)
⟶
(
x2
=
x3
⟶
x5
)
⟶
(
x2
=
x4
⟶
x5
)
⟶
(
x3
=
x4
⟶
x5
)
⟶
x5
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
0799b..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
not
(
or
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u3
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x3
x4
)
)
⟶
x1
)
⟶
x1
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u4
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x0
x3
x4
)
)
)
⟶
x1
)
⟶
x1
)
)
⟶
∀ x1 .
x1
∈
u9
⟶
∀ x2 .
x2
∈
u9
⟶
∀ x3 .
x3
∈
u9
⟶
∀ x4 .
x4
∈
u9
⟶
∀ x5 .
x5
∈
u9
⟶
(
x1
=
x2
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x4
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
x0
x1
x2
⟶
x0
x1
x3
⟶
x0
x1
x4
⟶
not
(
x0
x2
x3
)
⟶
not
(
x0
x2
x4
)
⟶
not
(
x0
x3
x4
)
⟶
x0
x5
x2
⟶
x0
x5
x3
⟶
x0
x5
x4
⟶
False
(proof)
previous assets