Search for blocks/addresses/...
Proofgold Proposition
∀ x0 .
SNo
x0
⟶
∀ x1 .
SNo
x1
⟶
mul_SNo
x0
x1
=
SNoCut
(
binunion
{
add_SNo
(
mul_SNo
(
ap
x3
0
)
x1
)
(
add_SNo
(
mul_SNo
x0
(
ap
x3
1
)
)
(
minus_SNo
(
mul_SNo
(
ap
x3
0
)
(
ap
x3
1
)
)
)
)
|x3 ∈
setprod
(
SNoL
x0
)
(
SNoL
x1
)
}
{
add_SNo
(
mul_SNo
(
ap
x3
0
)
x1
)
(
add_SNo
(
mul_SNo
x0
(
ap
x3
1
)
)
(
minus_SNo
(
mul_SNo
(
ap
x3
0
)
(
ap
x3
1
)
)
)
)
|x3 ∈
setprod
(
SNoR
x0
)
(
SNoR
x1
)
}
)
(
binunion
{
add_SNo
(
mul_SNo
(
ap
x3
0
)
x1
)
(
add_SNo
(
mul_SNo
x0
(
ap
x3
1
)
)
(
minus_SNo
(
mul_SNo
(
ap
x3
0
)
(
ap
x3
1
)
)
)
)
|x3 ∈
setprod
(
SNoL
x0
)
(
SNoR
x1
)
}
{
add_SNo
(
mul_SNo
(
ap
x3
0
)
x1
)
(
add_SNo
(
mul_SNo
x0
(
ap
x3
1
)
)
(
minus_SNo
(
mul_SNo
(
ap
x3
0
)
(
ap
x3
1
)
)
)
)
|x3 ∈
setprod
(
SNoR
x0
)
(
SNoL
x1
)
}
)
type
prop
theory
HotG
name
mul_SNo_eq
proof
PUK1b..
Megalodon
mul_SNo_eq
proofgold address
TMR2S..
mul_SNo_eq
creator
4949
Pr6Pc..
/
1acda..
owner
4949
Pr6Pc..
/
1acda..
term root
726bd..