Search for blocks/addresses/...

Proofgold Address

address
PUK1bKUKofX7u1tPMcmFhy78CZ3qtEeqBQn
total
0
mg
-
conjpub
-
current assets
db51e../d0b08.. bday: 4949 doc published by Pr6Pc..
Theorem eq_i_traeq_i_tra : ∀ x0 x1 x2 . x0 = x1x1 = x2x0 = x2 (proof)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Definition TransSetTransSet := λ x0 . ∀ x1 . x1x0x1x0
Param ordsuccordsucc : ιι
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Known Subq_refSubq_ref : ∀ x0 . x0x0
Theorem TransSet_In_ordsucc_SubqTransSet_In_ordsucc_Subq : ∀ x0 x1 . TransSet x1x0ordsucc x1x0x1 (proof)
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Theorem inv_Repl_eqinv_Repl_eq : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 (x2 x3) = x3)prim5 (prim5 x0 x2) x1 = x0 (proof)
Theorem invol_Repl_eqinvol_Repl_eq : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0x1 (x1 x2) = x2)prim5 (prim5 x0 x1) x1 = x0 (proof)
Param SNoSNo : ιο
Param SNoLtSNoLt : ιιο
Known SNoLt_trichotomy_orSNoLt_trichotomy_or : ∀ x0 x1 . SNo x0SNo x1or (or (SNoLt x0 x1) (x0 = x1)) (SNoLt x1 x0)
Theorem SNoLt_trichotomy_or_impredSNoLt_trichotomy_or_impred : ∀ x0 x1 . SNo x0SNo x1∀ x2 : ο . (SNoLt x0 x1x2)(x0 = x1x2)(SNoLt x1 x0x2)x2 (proof)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition SNoCutPSNoCutP := λ x0 x1 . and (and (∀ x2 . x2x0SNo x2) (∀ x2 . x2x1SNo x2)) (∀ x2 . x2x0∀ x3 . x3x1SNoLt x2 x3)
Param SNoCutSNoCut : ιιι
Param SNoLevSNoLev : ιι
Param binunionbinunion : ιιι
Param famunionfamunion : ι(ιι) → ι
Param SNoEq_SNoEq_ : ιιιο
Known SNoCutP_SNoCutSNoCutP_SNoCut : ∀ x0 x1 . SNoCutP x0 x1and (and (and (and (SNo (SNoCut x0 x1)) (SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion x0 (λ x2 . ordsucc (SNoLev x2))) (famunion x1 (λ x2 . ordsucc (SNoLev x2)))))) (∀ x2 . x2x0SNoLt x2 (SNoCut x0 x1))) (∀ x2 . x2x1SNoLt (SNoCut x0 x1) x2)) (∀ x2 . SNo x2(∀ x3 . x3x0SNoLt x3 x2)(∀ x3 . x3x1SNoLt x2 x3)and (SNoLev (SNoCut x0 x1)SNoLev x2) (SNoEq_ (SNoLev (SNoCut x0 x1)) (SNoCut x0 x1) x2))
Theorem SNoCutP_SNoCut_impredSNoCutP_SNoCut_impred : ∀ x0 x1 . SNoCutP x0 x1∀ x2 : ο . (SNo (SNoCut x0 x1)SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion x0 (λ x3 . ordsucc (SNoLev x3))) (famunion x1 (λ x3 . ordsucc (SNoLev x3))))(∀ x3 . x3x0SNoLt x3 (SNoCut x0 x1))(∀ x3 . x3x1SNoLt (SNoCut x0 x1) x3)(∀ x3 . SNo x3(∀ x4 . x4x0SNoLt x4 x3)(∀ x4 . x4x1SNoLt x3 x4)and (SNoLev (SNoCut x0 x1)SNoLev x3) (SNoEq_ (SNoLev (SNoCut x0 x1)) (SNoCut x0 x1) x3))x2)x2 (proof)
Definition ordinalordinal := λ x0 . and (TransSet x0) (∀ x1 . x1x0TransSet x1)
Known ordinal_In_Or_Subqordinal_In_Or_Subq : ∀ x0 x1 . ordinal x0ordinal x1or (x0x1) (x1x0)
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Param SNoLeSNoLe : ιιο
Known SNoLtLe_traSNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2
Known ordinal_SNoordinal_SNo : ∀ x0 . ordinal x0SNo x0
Known ordinal_Subq_SNoLeordinal_Subq_SNoLe : ∀ x0 x1 . ordinal x0ordinal x1x0x1SNoLe x0 x1
Theorem ordinal_SNoLt_Inordinal_SNoLt_In : ∀ x0 x1 . ordinal x0ordinal x1SNoLt x0 x1x0x1 (proof)
Known SNoLeLt_traSNoLeLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLt x1 x2SNoLt x0 x2
Known ordinal_In_SNoLtordinal_In_SNoLt : ∀ x0 . ordinal x0∀ x1 . x1x0SNoLt x1 x0
Theorem ordinal_SNoLe_Subqordinal_SNoLe_Subq : ∀ x0 x1 . ordinal x0ordinal x1SNoLe x0 x1x0x1 (proof)
Param SepSep : ι(ιο) → ι
Param SNoS_SNoS_ : ιι
Definition SNoLSNoL := λ x0 . {x1 ∈ SNoS_ (SNoLev x0)|SNoLt x1 x0}
Known Sep_SubqSep_Subq : ∀ x0 . ∀ x1 : ι → ο . Sep x0 x1x0
Theorem SNoL_SNoS_SNoL_SNoS_ : ∀ x0 . SNoL x0SNoS_ (SNoLev x0) (proof)
Definition SNoRSNoR := λ x0 . Sep (SNoS_ (SNoLev x0)) (SNoLt x0)
Theorem SNoR_SNoS_SNoR_SNoS_ : ∀ x0 . SNoR x0SNoS_ (SNoLev x0) (proof)
Known SNoL_ESNoL_E : ∀ x0 . SNo x0∀ x1 . x1SNoL x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x2)x2
Known SNoS_I2SNoS_I2 : ∀ x0 x1 . SNo x0SNo x1SNoLev x0SNoLev x1x0SNoS_ (SNoLev x1)
Param SNo_SNo_ : ιιο
Known SNoS_E2SNoS_E2 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (SNoLev x1x0ordinal (SNoLev x1)SNo x1SNo_ (SNoLev x1) x1x2)x2
Known SNoL_ISNoL_I : ∀ x0 . SNo x0∀ x1 . SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x1SNoL x0
Known ordinal_SNoLev_maxordinal_SNoLev_max : ∀ x0 . ordinal x0∀ x1 . SNo x1SNoLev x1x0SNoLt x1 x0
Known ordinal_SNoLevordinal_SNoLev : ∀ x0 . ordinal x0SNoLev x0 = x0
Theorem ordinal_SNoLordinal_SNoL : ∀ x0 . ordinal x0SNoL x0 = SNoS_ x0 (proof)
Known Empty_Subq_eqEmpty_Subq_eq : ∀ x0 . x00x0 = 0
Known SNoR_ESNoR_E : ∀ x0 . SNo x0∀ x1 . x1SNoR x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x2)x2
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Theorem ordinal_SNoRordinal_SNoR : ∀ x0 . ordinal x0SNoR x0 = 0 (proof)
Known SNoCutP_SNoL_SNoRSNoCutP_SNoL_SNoR : ∀ x0 . SNo x0SNoCutP (SNoL x0) (SNoR x0)
Theorem ordinal_SNoCutPordinal_SNoCutP : ∀ x0 . ordinal x0SNoCutP (SNoS_ x0) 0 (proof)
Known SNo_etaSNo_eta : ∀ x0 . SNo x0x0 = SNoCut (SNoL x0) (SNoR x0)
Theorem ordinal_SNoCut_etaordinal_SNoCut_eta : ∀ x0 . ordinal x0x0 = SNoCut (SNoS_ x0) 0 (proof)
Known ordinal_Emptyordinal_Empty : ordinal 0
Theorem SNo_0SNo_0 : SNo 0 (proof)
Theorem SNoLev_0SNoLev_0 : SNoLev 0 = 0 (proof)
Definition nInnIn := λ x0 x1 . not (x0x1)
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Theorem SNoL_0SNoL_0 : SNoL 0 = 0 (proof)
Theorem SNoR_0SNoR_0 : SNoR 0 = 0 (proof)
Known SNoLeESNoLeE : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1or (SNoLt x0 x1) (x0 = x1)
Param binintersectbinintersect : ιιι
Known SNoLtESNoLtE : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1∀ x2 : ο . (∀ x3 . SNo x3SNoLev x3binintersect (SNoLev x0) (SNoLev x1)SNoEq_ (SNoLev x3) x3 x0SNoEq_ (SNoLev x3) x3 x1SNoLt x0 x3SNoLt x3 x1nIn (SNoLev x3) x0SNoLev x3x1x2)(SNoLev x0SNoLev x1SNoEq_ (SNoLev x0) x0 x1SNoLev x0x1x2)(SNoLev x1SNoLev x0SNoEq_ (SNoLev x1) x0 x1nIn (SNoLev x1) x0x2)x2
Known SNoS_ISNoS_I : ∀ x0 . ordinal x0∀ x1 x2 . x2x0SNo_ x2 x1x1SNoS_ x0
Known SNoLev_SNoLev_ : ∀ x0 . SNo x0SNo_ (SNoLev x0) x0
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known ordinal_SNoLev_max_2ordinal_SNoLev_max_2 : ∀ x0 . ordinal x0∀ x1 . SNo x1SNoLev x1ordsucc x0SNoLe x1 x0
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Known SNoLev_ordinalSNoLev_ordinal : ∀ x0 . SNo x0ordinal (SNoLev x0)
Theorem SNo_max_SNoLevSNo_max_SNoLev : ∀ x0 . SNo x0(∀ x1 . x1SNoS_ (SNoLev x0)SNoLt x1 x0)SNoLev x0 = x0 (proof)
Theorem SNo_max_ordinalSNo_max_ordinal : ∀ x0 . SNo x0(∀ x1 . x1SNoS_ (SNoLev x0)SNoLt x1 x0)ordinal x0 (proof)
Param SNo_extend0SNo_extend0 : ιι
Known SNoLtI3SNoLtI3 : ∀ x0 x1 . SNoLev x1SNoLev x0SNoEq_ (SNoLev x1) x0 x1nIn (SNoLev x1) x0SNoLt x0 x1
Known SNo_extend0_SNoLevSNo_extend0_SNoLev : ∀ x0 . SNo x0SNoLev (SNo_extend0 x0) = ordsucc (SNoLev x0)
Known SNo_extend0_SNoEqSNo_extend0_SNoEq : ∀ x0 . SNo x0SNoEq_ (SNoLev x0) (SNo_extend0 x0) x0
Known SNo_extend0_nInSNo_extend0_nIn : ∀ x0 . SNo x0nIn (SNoLev x0) (SNo_extend0 x0)
Theorem SNo_extend0_LtSNo_extend0_Lt : ∀ x0 . SNo x0SNoLt (SNo_extend0 x0) x0 (proof)
Param SNo_extend1SNo_extend1 : ιι
Known SNoLtI2SNoLtI2 : ∀ x0 x1 . SNoLev x0SNoLev x1SNoEq_ (SNoLev x0) x0 x1SNoLev x0x1SNoLt x0 x1
Known SNo_extend1_SNoLevSNo_extend1_SNoLev : ∀ x0 . SNo x0SNoLev (SNo_extend1 x0) = ordsucc (SNoLev x0)
Known SNoEq_sym_SNoEq_sym_ : ∀ x0 x1 x2 . SNoEq_ x0 x1 x2SNoEq_ x0 x2 x1
Known SNo_extend1_SNoEqSNo_extend1_SNoEq : ∀ x0 . SNo x0SNoEq_ (SNoLev x0) (SNo_extend1 x0) x0
Known SNo_extend1_InSNo_extend1_In : ∀ x0 . SNo x0SNoLev x0SNo_extend1 x0
Theorem SNo_extend1_GtSNo_extend1_Gt : ∀ x0 . SNo x0SNoLt x0 (SNo_extend1 x0) (proof)
Param In_rec_iiIn_rec_ii : (ι(ιιι) → ιι) → ιιι
Param If_iiIf_ii : ο(ιι) → (ιι) → ιι
Param If_iIf_i : οιιι
Param TrueTrue : ο
Definition SNo_rec_iSNo_rec_i := λ x0 : ι → (ι → ι) → ι . λ x1 . In_rec_ii (λ x2 . λ x3 : ι → ι → ι . If_ii (ordinal x2) (λ x4 . If_i (x4SNoS_ (ordsucc x2)) (x0 x4 (λ x5 . x3 (SNoLev x5) x5)) (prim0 (λ x5 . True))) (λ x4 . prim0 (λ x5 . True))) (SNoLev x1) x1
Known In_rec_ii_eqIn_rec_ii_eq : ∀ x0 : ι → (ι → ι → ι)ι → ι . (∀ x1 . ∀ x2 x3 : ι → ι → ι . (∀ x4 . x4x1x2 x4 = x3 x4)x0 x1 x2 = x0 x1 x3)∀ x1 . In_rec_ii x0 x1 = x0 x1 (In_rec_ii x0)
Known If_ii_1If_ii_1 : ∀ x0 : ο . ∀ x1 x2 : ι → ι . x0If_ii x0 x1 x2 = x1
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Known SNoS_SNoLevSNoS_SNoLev : ∀ x0 . SNo x0x0SNoS_ (ordsucc (SNoLev x0))
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known ordinal_ordsuccordinal_ordsucc : ∀ x0 . ordinal x0ordinal (ordsucc x0)
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Known If_ii_0If_ii_0 : ∀ x0 : ο . ∀ x1 x2 : ι → ι . not x0If_ii x0 x1 x2 = x2
Theorem SNo_rec_i_eqSNo_rec_i_eq : ∀ x0 : ι → (ι → ι) → ι . (∀ x1 . SNo x1∀ x2 x3 : ι → ι . (∀ x4 . x4SNoS_ (SNoLev x1)x2 x4 = x3 x4)x0 x1 x2 = x0 x1 x3)∀ x1 . SNo x1SNo_rec_i x0 x1 = x0 x1 (SNo_rec_i x0) (proof)
Param In_rec_iiiIn_rec_iii : (ι(ιιιι) → ιιι) → ιιιι
Param If_iiiIf_iii : ο(ιιι) → (ιιι) → ιιι
Param Descr_iiDescr_ii : ((ιι) → ο) → ιι
Definition SNo_rec_iiSNo_rec_ii := λ x0 : ι → (ι → ι → ι)ι → ι . λ x1 . In_rec_iii (λ x2 . λ x3 : ι → ι → ι → ι . If_iii (ordinal x2) (λ x4 . If_ii (x4SNoS_ (ordsucc x2)) (x0 x4 (λ x5 . x3 (SNoLev x5) x5)) (Descr_ii (λ x5 : ι → ι . True))) (λ x4 . Descr_ii (λ x5 : ι → ι . True))) (SNoLev x1) x1
Known In_rec_iii_eqIn_rec_iii_eq : ∀ x0 : ι → (ι → ι → ι → ι)ι → ι → ι . (∀ x1 . ∀ x2 x3 : ι → ι → ι → ι . (∀ x4 . x4x1x2 x4 = x3 x4)x0 x1 x2 = x0 x1 x3)∀ x1 . In_rec_iii x0 x1 = x0 x1 (In_rec_iii x0)
Known If_iii_1If_iii_1 : ∀ x0 : ο . ∀ x1 x2 : ι → ι → ι . x0If_iii x0 x1 x2 = x1
Known If_iii_0If_iii_0 : ∀ x0 : ο . ∀ x1 x2 : ι → ι → ι . not x0If_iii x0 x1 x2 = x2
Theorem SNo_rec_ii_eqSNo_rec_ii_eq : ∀ x0 : ι → (ι → ι → ι)ι → ι . (∀ x1 . SNo x1∀ x2 x3 : ι → ι → ι . (∀ x4 . x4SNoS_ (SNoLev x1)x2 x4 = x3 x4)x0 x1 x2 = x0 x1 x3)∀ x1 . SNo x1SNo_rec_ii x0 x1 = x0 x1 (SNo_rec_ii x0) (proof)
Known SNoS_In_neqSNoS_In_neq : ∀ x0 . SNo x0∀ x1 . x1SNoS_ (SNoLev x0)x1 = x0∀ x2 : ο . x2
Theorem SNo_rec2_G_propSNo_rec2_G_prop : ∀ x0 : ι → ι → (ι → ι → ι) → ι . (∀ x1 . SNo x1∀ x2 . SNo x2∀ x3 x4 : ι → ι → ι . (∀ x5 . x5SNoS_ (SNoLev x1)∀ x6 . SNo x6x3 x5 x6 = x4 x5 x6)(∀ x5 . x5SNoS_ (SNoLev x2)x3 x1 x5 = x4 x1 x5)x0 x1 x2 x3 = x0 x1 x2 x4)∀ x1 . SNo x1∀ x2 x3 : ι → ι → ι . (∀ x4 . x4SNoS_ (SNoLev x1)x2 x4 = x3 x4)∀ x4 . SNo x4∀ x5 x6 : ι → ι . (∀ x7 . x7SNoS_ (SNoLev x4)x5 x7 = x6 x7)x0 x1 x4 (λ x8 x9 . If_i (x8 = x1) (x5 x9) (x2 x8 x9)) = x0 x1 x4 (λ x8 x9 . If_i (x8 = x1) (x6 x9) (x3 x8 x9)) (proof)
Theorem SNo_rec2_eq_1SNo_rec2_eq_1 : ∀ x0 : ι → ι → (ι → ι → ι) → ι . (∀ x1 . SNo x1∀ x2 . SNo x2∀ x3 x4 : ι → ι → ι . (∀ x5 . x5SNoS_ (SNoLev x1)∀ x6 . SNo x6x3 x5 x6 = x4 x5 x6)(∀ x5 . x5SNoS_ (SNoLev x2)x3 x1 x5 = x4 x1 x5)x0 x1 x2 x3 = x0 x1 x2 x4)∀ x1 . SNo x1∀ x2 : ι → ι → ι . ∀ x3 . SNo x3SNo_rec_i (λ x5 . λ x6 : ι → ι . x0 x1 x5 (λ x7 x8 . If_i (x7 = x1) (x6 x8) (x2 x7 x8))) x3 = x0 x1 x3 (λ x5 x6 . If_i (x5 = x1) (SNo_rec_i (λ x7 . λ x8 : ι → ι . x0 x1 x7 (λ x9 x10 . If_i (x9 = x1) (x8 x10) (x2 x9 x10))) x6) (x2 x5 x6)) (proof)
Definition SNo_rec2SNo_rec2 := λ x0 : ι → ι → (ι → ι → ι) → ι . SNo_rec_ii (λ x1 . λ x2 : ι → ι → ι . λ x3 . If_i (SNo x3) (SNo_rec_i (λ x4 . λ x5 : ι → ι . x0 x1 x4 (λ x6 x7 . If_i (x6 = x1) (x5 x7) (x2 x6 x7))) x3) 0)
Known ordinal_indordinal_ind : ∀ x0 : ι → ο . (∀ x1 . ordinal x1(∀ x2 . x2x1x0 x2)x0 x1)∀ x1 . ordinal x1x0 x1
Theorem SNo_rec2_eqSNo_rec2_eq : ∀ x0 : ι → ι → (ι → ι → ι) → ι . (∀ x1 . SNo x1∀ x2 . SNo x2∀ x3 x4 : ι → ι → ι . (∀ x5 . x5SNoS_ (SNoLev x1)∀ x6 . SNo x6x3 x5 x6 = x4 x5 x6)(∀ x5 . x5SNoS_ (SNoLev x2)x3 x1 x5 = x4 x1 x5)x0 x1 x2 x3 = x0 x1 x2 x4)∀ x1 . SNo x1∀ x2 . SNo x2SNo_rec2 x0 x1 x2 = x0 x1 x2 (SNo_rec2 x0) (proof)
Theorem SNo_ordinal_indSNo_ordinal_ind : ∀ x0 : ι → ο . (∀ x1 . ordinal x1∀ x2 . x2SNoS_ x1x0 x2)∀ x1 . SNo x1x0 x1 (proof)
Theorem SNo_ordinal_ind2SNo_ordinal_ind2 : ∀ x0 : ι → ι → ο . (∀ x1 . ordinal x1∀ x2 . ordinal x2∀ x3 . x3SNoS_ x1∀ x4 . x4SNoS_ x2x0 x3 x4)∀ x1 x2 . SNo x1SNo x2x0 x1 x2 (proof)
Theorem SNo_ordinal_ind3SNo_ordinal_ind3 : ∀ x0 : ι → ι → ι → ο . (∀ x1 . ordinal x1∀ x2 . ordinal x2∀ x3 . ordinal x3∀ x4 . x4SNoS_ x1∀ x5 . x5SNoS_ x2∀ x6 . x6SNoS_ x3x0 x4 x5 x6)∀ x1 x2 x3 . SNo x1SNo x2SNo x3x0 x1 x2 x3 (proof)
Theorem SNoLev_indSNoLev_ind : ∀ x0 : ι → ο . (∀ x1 . SNo x1(∀ x2 . x2SNoS_ (SNoLev x1)x0 x2)x0 x1)∀ x1 . SNo x1x0 x1 (proof)
Theorem SNoLev_ind2SNoLev_ind2 : ∀ x0 : ι → ι → ο . (∀ x1 x2 . SNo x1SNo x2(∀ x3 . x3SNoS_ (SNoLev x1)x0 x3 x2)(∀ x3 . x3SNoS_ (SNoLev x2)x0 x1 x3)(∀ x3 . x3SNoS_ (SNoLev x1)∀ x4 . x4SNoS_ (SNoLev x2)x0 x3 x4)x0 x1 x2)∀ x1 x2 . SNo x1SNo x2x0 x1 x2 (proof)
Theorem SNoLev_ind3SNoLev_ind3 : ∀ x0 : ι → ι → ι → ο . (∀ x1 x2 x3 . SNo x1SNo x2SNo x3(∀ x4 . x4SNoS_ (SNoLev x1)x0 x4 x2 x3)(∀ x4 . x4SNoS_ (SNoLev x2)x0 x1 x4 x3)(∀ x4 . x4SNoS_ (SNoLev x3)x0 x1 x2 x4)(∀ x4 . x4SNoS_ (SNoLev x1)∀ x5 . x5SNoS_ (SNoLev x2)x0 x4 x5 x3)(∀ x4 . x4SNoS_ (SNoLev x1)∀ x5 . x5SNoS_ (SNoLev x3)x0 x4 x2 x5)(∀ x4 . x4SNoS_ (SNoLev x2)∀ x5 . x5SNoS_ (SNoLev x3)x0 x1 x4 x5)(∀ x4 . x4SNoS_ (SNoLev x1)∀ x5 . x5SNoS_ (SNoLev x2)∀ x6 . x6SNoS_ (SNoLev x3)x0 x4 x5 x6)x0 x1 x2 x3)∀ x1 x2 x3 . SNo x1SNo x2SNo x3x0 x1 x2 x3 (proof)
Param nat_pnat_p : ιο
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known nat_1nat_1 : nat_p 1
Theorem SNo_1SNo_1 : SNo 1 (proof)
Known nat_2nat_2 : nat_p 2
Theorem SNo_2SNo_2 : SNo 2 (proof)
Param omegaomega : ι
Known omega_ordinalomega_ordinal : ordinal omega
Theorem SNo_omegaSNo_omega : SNo omega (proof)
Known ordinal_1ordinal_1 : ordinal 1
Known In_0_1In_0_1 : 01
Theorem SNoLt_0_1SNoLt_0_1 : SNoLt 0 1 (proof)
Known ordinal_2ordinal_2 : ordinal 2
Known In_0_2In_0_2 : 02
Theorem SNoLt_0_2SNoLt_0_2 : SNoLt 0 2 (proof)
Known In_1_2In_1_2 : 12
Theorem SNoLt_1_2SNoLt_1_2 : SNoLt 1 2 (proof)
Definition minus_SNominus_SNo := SNo_rec_i (λ x0 . λ x1 : ι → ι . SNoCut (prim5 (SNoR x0) x1) (prim5 (SNoL x0) x1))
Known ReplEq_extReplEq_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)prim5 x0 x1 = prim5 x0 x2
Known SNoL_SNoSSNoL_SNoS : ∀ x0 . SNo x0∀ x1 . x1SNoL x0x1SNoS_ (SNoLev x0)
Known SNoR_SNoSSNoR_SNoS : ∀ x0 . SNo x0∀ x1 . x1SNoR x0x1SNoS_ (SNoLev x0)
Theorem minus_SNo_eqminus_SNo_eq : ∀ x0 . SNo x0minus_SNo x0 = SNoCut (prim5 (SNoR x0) minus_SNo) (prim5 (SNoL x0) minus_SNo) (proof)
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known SNoCutP_SNoCut_RSNoCutP_SNoCut_R : ∀ x0 x1 . SNoCutP x0 x1∀ x2 . x2x1SNoLt (SNoCut x0 x1) x2
Known SNoCutP_SNoCut_LSNoCutP_SNoCut_L : ∀ x0 x1 . SNoCutP x0 x1∀ x2 . x2x0SNoLt x2 (SNoCut x0 x1)
Known SNoCutP_SNo_SNoCutSNoCutP_SNo_SNoCut : ∀ x0 x1 . SNoCutP x0 x1SNo (SNoCut x0 x1)
Known SNoLev_propSNoLev_prop : ∀ x0 . SNo x0and (ordinal (SNoLev x0)) (SNo_ (SNoLev x0) x0)
Known binintersectEbinintersectE : ∀ x0 x1 x2 . x2binintersect x0 x1and (x2x0) (x2x1)
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Theorem minus_SNo_prop1minus_SNo_prop1 : ∀ x0 . SNo x0and (and (and (SNo (minus_SNo x0)) (∀ x1 . x1SNoL x0SNoLt (minus_SNo x0) (minus_SNo x1))) (∀ x1 . x1SNoR x0SNoLt (minus_SNo x1) (minus_SNo x0))) (SNoCutP (prim5 (SNoR x0) minus_SNo) (prim5 (SNoL x0) minus_SNo)) (proof)
Theorem SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0) (proof)
Theorem minus_SNo_Lt_contraminus_SNo_Lt_contra : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1SNoLt (minus_SNo x1) (minus_SNo x0) (proof)
Known SNoLtLeSNoLtLe : ∀ x0 x1 . SNoLt x0 x1SNoLe x0 x1
Known SNoLe_refSNoLe_ref : ∀ x0 . SNoLe x0 x0
Theorem minus_SNo_Le_contraminus_SNo_Le_contra : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1SNoLe (minus_SNo x1) (minus_SNo x0) (proof)
Theorem minus_SNo_SNoCutPminus_SNo_SNoCutP : ∀ x0 . SNo x0SNoCutP (prim5 (SNoR x0) minus_SNo) (prim5 (SNoL x0) minus_SNo) (proof)
Theorem minus_SNo_SNoCutP_genminus_SNo_SNoCutP_gen : ∀ x0 x1 . SNoCutP x0 x1SNoCutP (prim5 x1 minus_SNo) (prim5 x0 minus_SNo) (proof)
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known famunionEfamunionE : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2famunion x0 x1∀ x3 : ο . (∀ x4 . and (x4x0) (x2x1 x4)x3)x3
Known In_no2cycleIn_no2cycle : ∀ x0 x1 . x0x1x1x0False
Known ordinal_Heredordinal_Hered : ∀ x0 . ordinal x0∀ x1 . x1x0ordinal x1
Known ordinal_ordsucc_In_eqordinal_ordsucc_In_eq : ∀ x0 x1 . ordinal x0x1x0or (ordsucc x1x0) (x0 = ordsucc x1)
Known ordinal_binunionordinal_binunion : ∀ x0 x1 . ordinal x0ordinal x1ordinal (binunion x0 x1)
Known ordinal_famunionordinal_famunion : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0ordinal (x1 x2))ordinal (famunion x0 x1)
Theorem minus_SNo_Lev_lem1minus_SNo_Lev_lem1 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0SNoLev (minus_SNo x1)SNoLev x1 (proof)
Theorem minus_SNo_Lev_lem2minus_SNo_Lev_lem2 : ∀ x0 . SNo x0SNoLev (minus_SNo x0)SNoLev x0 (proof)
Known SNo_indSNo_ind : ∀ x0 : ι → ο . (∀ x1 x2 . SNoCutP x1 x2(∀ x3 . x3x1x0 x3)(∀ x3 . x3x2x0 x3)x0 (SNoCut x1 x2))∀ x1 . SNo x1x0 x1
Known SNo_eqSNo_eq : ∀ x0 x1 . SNo x0SNo x1SNoLev x0 = SNoLev x1SNoEq_ (SNoLev x0) x0 x1x0 = x1
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known SNoCutP_SNoCut_fstSNoCutP_SNoCut_fst : ∀ x0 x1 . SNoCutP x0 x1∀ x2 . SNo x2(∀ x3 . x3x0SNoLt x3 x2)(∀ x3 . x3x1SNoLt x2 x3)and (SNoLev (SNoCut x0 x1)SNoLev x2) (SNoEq_ (SNoLev (SNoCut x0 x1)) (SNoCut x0 x1) x2)
Theorem minus_SNo_involminus_SNo_invol : ∀ x0 . SNo x0minus_SNo (minus_SNo x0) = x0 (proof)
Theorem minus_SNo_Levminus_SNo_Lev : ∀ x0 . SNo x0SNoLev (minus_SNo x0) = SNoLev x0 (proof)
Known SNoLev_uniq2SNoLev_uniq2 : ∀ x0 . ordinal x0∀ x1 . SNo_ x0 x1SNoLev x1 = x0
Known SNo_SNoSNo_SNo : ∀ x0 . ordinal x0∀ x1 . SNo_ x0 x1SNo x1
Theorem minus_SNo_SNo_minus_SNo_SNo_ : ∀ x0 . ordinal x0∀ x1 . SNo_ x0 x1SNo_ x0 (minus_SNo x1) (proof)
Theorem minus_SNo_SNoS_minus_SNo_SNoS_ : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0minus_SNo x1SNoS_ x0 (proof)
Theorem minus_SNoCut_eq_lemminus_SNoCut_eq_lem : ∀ x0 . SNo x0∀ x1 x2 . SNoCutP x1 x2x0 = SNoCut x1 x2minus_SNo x0 = SNoCut (prim5 x2 minus_SNo) (prim5 x1 minus_SNo) (proof)
Theorem minus_SNoCut_eqminus_SNoCut_eq : ∀ x0 x1 . SNoCutP x0 x1minus_SNo (SNoCut x0 x1) = SNoCut (prim5 x1 minus_SNo) (prim5 x0 minus_SNo) (proof)
Theorem minus_SNo_Lt_contra1minus_SNo_Lt_contra1 : ∀ x0 x1 . SNo x0SNo x1SNoLt (minus_SNo x0) x1SNoLt (minus_SNo x1) x0 (proof)
Theorem minus_SNo_Lt_contra2minus_SNo_Lt_contra2 : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 (minus_SNo x1)SNoLt x1 (minus_SNo x0) (proof)
Theorem minus_SNo_Lt_contra3minus_SNo_Lt_contra3 : ∀ x0 x1 . SNo x0SNo x1SNoLt (minus_SNo x0) (minus_SNo x1)SNoLt x1 x0 (proof)
Theorem SNo_momegaSNo_momega : SNo (minus_SNo omega) (proof)
Theorem mordinal_SNomordinal_SNo : ∀ x0 . ordinal x0SNo (minus_SNo x0) (proof)
Theorem mordinal_SNoLevmordinal_SNoLev : ∀ x0 . ordinal x0SNoLev (minus_SNo x0) = x0 (proof)
Theorem mordinal_SNoLev_minmordinal_SNoLev_min : ∀ x0 . ordinal x0∀ x1 . SNo x1SNoLev x1x0SNoLt (minus_SNo x0) x1 (proof)
Theorem mordinal_SNoLev_min_2mordinal_SNoLev_min_2 : ∀ x0 . ordinal x0∀ x1 . SNo x1SNoLev x1ordsucc x0SNoLe (minus_SNo x0) x1 (proof)
Definition add_SNoadd_SNo := SNo_rec2 (λ x0 x1 . λ x2 : ι → ι → ι . SNoCut (binunion {x2 x3 x1|x3 ∈ SNoL x0} (prim5 (SNoL x1) (x2 x0))) (binunion {x2 x3 x1|x3 ∈ SNoR x0} (prim5 (SNoR x1) (x2 x0))))
Theorem add_SNo_eqadd_SNo_eq : ∀ x0 . SNo x0∀ x1 . SNo x1add_SNo x0 x1 = SNoCut (binunion {add_SNo x3 x1|x3 ∈ SNoL x0} (prim5 (SNoL x1) (add_SNo x0))) (binunion {add_SNo x3 x1|x3 ∈ SNoR x0} (prim5 (SNoR x1) (add_SNo x0))) (proof)
Param setprodsetprod : ιιι
Param apap : ιιι
Definition mul_SNomul_SNo := SNo_rec2 (λ x0 x1 . λ x2 : ι → ι → ι . SNoCut (binunion {add_SNo (x2 (ap x3 0) x1) (add_SNo (x2 x0 (ap x3 1)) (minus_SNo (x2 (ap x3 0) (ap x3 1))))|x3 ∈ setprod (SNoL x0) (SNoL x1)} {add_SNo (x2 (ap x3 0) x1) (add_SNo (x2 x0 (ap x3 1)) (minus_SNo (x2 (ap x3 0) (ap x3 1))))|x3 ∈ setprod (SNoR x0) (SNoR x1)}) (binunion {add_SNo (x2 (ap x3 0) x1) (add_SNo (x2 x0 (ap x3 1)) (minus_SNo (x2 (ap x3 0) (ap x3 1))))|x3 ∈ setprod (SNoL x0) (SNoR x1)} {add_SNo (x2 (ap x3 0) x1) (add_SNo (x2 x0 (ap x3 1)) (minus_SNo (x2 (ap x3 0) (ap x3 1))))|x3 ∈ setprod (SNoR x0) (SNoL x1)}))
Known ReplEq_setprod_extReplEq_setprod_ext : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . (∀ x4 . x4x0∀ x5 . x5x1x2 x4 x5 = x3 x4 x5){x2 (ap x5 0) (ap x5 1)|x5 ∈ setprod x0 x1} = {x3 (ap x5 0) (ap x5 1)|x5 ∈ setprod x0 x1}
Theorem mul_SNo_eqmul_SNo_eq : ∀ x0 . SNo x0∀ x1 . SNo x1mul_SNo x0 x1 = SNoCut (binunion {add_SNo (mul_SNo (ap x3 0) x1) (add_SNo (mul_SNo x0 (ap x3 1)) (minus_SNo (mul_SNo (ap x3 0) (ap x3 1))))|x3 ∈ setprod (SNoL x0) (SNoL x1)} {add_SNo (mul_SNo (ap x3 0) x1) (add_SNo (mul_SNo x0 (ap x3 1)) (minus_SNo (mul_SNo (ap x3 0) (ap x3 1))))|x3 ∈ setprod (SNoR x0) (SNoR x1)}) (binunion {add_SNo (mul_SNo (ap x3 0) x1) (add_SNo (mul_SNo x0 (ap x3 1)) (minus_SNo (mul_SNo (ap x3 0) (ap x3 1))))|x3 ∈ setprod (SNoL x0) (SNoR x1)} {add_SNo (mul_SNo (ap x3 0) x1) (add_SNo (mul_SNo x0 (ap x3 1)) (minus_SNo (mul_SNo (ap x3 0) (ap x3 1))))|x3 ∈ setprod (SNoR x0) (SNoL x1)}) (proof)
Param explicit_Realsexplicit_Reals : ιιι(ιιι) → (ιιι) → (ιιο) → ο
Definition Eps_i_realset := prim0 (λ x0 . and (∀ x1 . x1x0SNo x1) (explicit_Reals x0 0 1 add_SNo mul_SNo SNoLe))

previous assets