Search for blocks/addresses/...
Proofgold Proposition
wceq
cdvh
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cxp
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x2 x3 .
cxp
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
)
(
λ x2 x3 .
cxp
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
)
(
λ x2 x3 .
cop
(
ccom
(
cfv
(
cv
x2
)
c1st
)
(
cfv
(
cv
x3
)
c1st
)
)
(
cmpt
(
λ x4 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
(
λ x4 .
ccom
(
cfv
(
cv
x4
)
(
cfv
(
cv
x2
)
c2nd
)
)
(
cfv
(
cv
x4
)
(
cfv
(
cv
x3
)
c2nd
)
)
)
)
)
)
)
(
cop
(
cfv
cnx
csca
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cedring
)
)
)
)
(
csn
(
cop
(
cfv
cnx
cvsca
)
(
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
(
λ x2 x3 .
cxp
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
)
(
λ x2 x3 .
cop
(
cfv
(
cfv
(
cv
x3
)
c1st
)
(
cv
x2
)
)
(
ccom
(
cv
x2
)
(
cfv
(
cv
x3
)
c2nd
)
)
)
)
)
)
)
)
)
type
prop
theory
SetMM
name
df_dvech
proof
PUM2G..
Megalodon
-
proofgold address
TMR9v..
creator
36387
PrCmT..
/
373b9..
owner
36387
PrCmT..
/
373b9..
term root
6d4e8..