current assets |
---|
49e19../9eeef.. bday: 28412 doc published by PrQUS..Param binunionbinunion : ι → ι → ιParam SingSing : ι → ιDefinition SetAdjoinSetAdjoin := λ x0 x1 . binunion x0 (Sing x1)Definition pair_tagpair_tag := λ x0 x1 x2 . binunion x1 {SetAdjoin x3 x0|x3 ∈ x2}Definition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseDefinition nInnIn := λ x0 x1 . not (x0 ∈ x1)Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2 ∈ x1 ⟶ x2 ∈ binunion x0 x1Known SingISingI : ∀ x0 . x0 ∈ Sing x0Theorem ctagged_notin_Fctagged_notin_F : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 . x1 x2 ⟶ nIn (SetAdjoin x3 x0) x2 (proof)Definition SubqSubq := λ x0 x1 . ∀ x2 . x2 ∈ x0 ⟶ x2 ∈ x1Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x2) ⟶ (x1 ⟶ x2) ⟶ x2Known binunionEbinunionE : ∀ x0 x1 x2 . x2 ∈ binunion x0 x1 ⟶ or (x2 ∈ x0) (x2 ∈ x1)Known FalseEFalseE : False ⟶ ∀ x0 : ο . x0Known SingESingE : ∀ x0 x1 . x1 ∈ Sing x0 ⟶ x1 = x0Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2 ∈ x0 ⟶ x2 ∈ binunion x0 x1Theorem ctagged_eqE_Subqctagged_eqE_Subq : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 . x1 x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ ∀ x5 . SetAdjoin x4 x0 = SetAdjoin x5 x0 ⟶ x4 ⊆ x5 (proof)Known set_extset_ext : ∀ x0 x1 . x0 ⊆ x1 ⟶ x1 ⊆ x0 ⟶ x0 = x1Theorem ctagged_eqE_eqctagged_eqE_eq : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 . x1 x2 ⟶ x1 x3 ⟶ ∀ x4 . x4 ∈ x2 ⟶ ∀ x5 . x5 ∈ x3 ⟶ SetAdjoin x4 x0 = SetAdjoin x5 x0 ⟶ x4 = x5 (proof)Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2 ∈ prim5 x0 x1 ⟶ ∀ x3 : ο . (∀ x4 . x4 ∈ x0 ⟶ x2 = x1 x4 ⟶ x3) ⟶ x3Theorem pair_tag_prop_1_Subqpair_tag_prop_1_Subq : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 x4 x5 . x1 x2 ⟶ pair_tag x0 x2 x3 = pair_tag x0 x4 x5 ⟶ x2 ⊆ x4 (proof)Theorem pair_tag_prop_1pair_tag_prop_1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 x4 x5 . x1 x2 ⟶ x1 x4 ⟶ pair_tag x0 x2 x3 = pair_tag x0 x4 x5 ⟶ x2 = x4 (proof)Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2 ∈ x0 ⟶ x1 x2 ∈ prim5 x0 x1Theorem pair_tag_prop_2_Subqpair_tag_prop_2_Subq : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 x4 x5 . x1 x3 ⟶ x1 x4 ⟶ x1 x5 ⟶ pair_tag x0 x2 x3 = pair_tag x0 x4 x5 ⟶ x3 ⊆ x5 (proof)Theorem pair_tag_prop_2pair_tag_prop_2 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 x4 x5 . x1 x2 ⟶ x1 x3 ⟶ x1 x4 ⟶ x1 x5 ⟶ pair_tag x0 x2 x3 = pair_tag x0 x4 x5 ⟶ x3 = x5 (proof)Known Repl_EmptyRepl_Empty : ∀ x0 : ι → ι . prim5 0 x0 = 0Known binunion_idrbinunion_idr : ∀ x0 . binunion x0 0 = x0Theorem pair_tag_0pair_tag_0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 . pair_tag x0 x2 0 = x2 (proof)Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Definition CD_carrCD_carr := λ x0 . λ x1 : ι → ο . λ x2 . ∀ x3 : ο . (∀ x4 . and (x1 x4) (∀ x5 : ο . (∀ x6 . and (x1 x6) (x2 = pair_tag x0 x4 x6) ⟶ x5) ⟶ x5) ⟶ x3) ⟶ x3Known andIandI : ∀ x0 x1 : ο . x0 ⟶ x1 ⟶ and x0 x1Theorem CD_carr_ICD_carr_I : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 . x1 x2 ⟶ x1 x3 ⟶ CD_carr x0 x1 (pair_tag x0 x2 x3) (proof)Theorem CD_carr_ECD_carr_E : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 . CD_carr x0 x1 x2 ⟶ ∀ x3 : ι → ο . (∀ x4 x5 . x1 x4 ⟶ x1 x5 ⟶ x2 = pair_tag x0 x4 x5 ⟶ x3 (pair_tag x0 x4 x5)) ⟶ x3 x2 (proof)Theorem CD_carr_0extCD_carr_0ext : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ x1 0 ⟶ ∀ x2 . x1 x2 ⟶ CD_carr x0 x1 x2 (proof)Definition CD_proj0CD_proj0 := λ x0 . λ x1 : ι → ο . λ x2 . prim0 (λ x3 . and (x1 x3) (∀ x4 : ο . (∀ x5 . and (x1 x5) (x2 = pair_tag x0 x3 x5) ⟶ x4) ⟶ x4))Definition CD_proj1CD_proj1 := λ x0 . λ x1 : ι → ο . λ x2 . prim0 (λ x3 . and (x1 x3) (x2 = pair_tag x0 (CD_proj0 x0 x1 x2) x3))Known Eps_i_exEps_i_ex : ∀ x0 : ι → ο . (∀ x1 : ο . (∀ x2 . x0 x2 ⟶ x1) ⟶ x1) ⟶ x0 (prim0 x0)Theorem CD_proj0_1CD_proj0_1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 . CD_carr x0 x1 x2 ⟶ and (x1 (CD_proj0 x0 x1 x2)) (∀ x3 : ο . (∀ x4 . and (x1 x4) (x2 = pair_tag x0 (CD_proj0 x0 x1 x2) x4) ⟶ x3) ⟶ x3) (proof)Theorem CD_proj0_2CD_proj0_2 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 . x1 x2 ⟶ x1 x3 ⟶ CD_proj0 x0 x1 (pair_tag x0 x2 x3) = x2 (proof)Theorem CD_proj1_1CD_proj1_1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 . CD_carr x0 x1 x2 ⟶ and (x1 (CD_proj1 x0 x1 x2)) (x2 = pair_tag x0 (CD_proj0 x0 x1 x2) (CD_proj1 x0 x1 x2)) (proof)Theorem CD_proj1_2CD_proj1_2 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 . x1 x2 ⟶ x1 x3 ⟶ CD_proj1 x0 x1 (pair_tag x0 x2 x3) = x3 (proof)Theorem CD_proj0RCD_proj0R : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 . CD_carr x0 x1 x2 ⟶ x1 (CD_proj0 x0 x1 x2) (proof)Theorem CD_proj1RCD_proj1R : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 . CD_carr x0 x1 x2 ⟶ x1 (CD_proj1 x0 x1 x2) (proof)Theorem CD_proj0proj1_etaCD_proj0proj1_eta : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 . CD_carr x0 x1 x2 ⟶ x2 = pair_tag x0 (CD_proj0 x0 x1 x2) (CD_proj1 x0 x1 x2) (proof)Theorem CD_proj0proj1_splitCD_proj0proj1_split : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 . CD_carr x0 x1 x2 ⟶ CD_carr x0 x1 x3 ⟶ CD_proj0 x0 x1 x2 = CD_proj0 x0 x1 x3 ⟶ CD_proj1 x0 x1 x2 = CD_proj1 x0 x1 x3 ⟶ x2 = x3 (proof)Theorem CD_proj0_FCD_proj0_F : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ x1 0 ⟶ ∀ x2 . x1 x2 ⟶ CD_proj0 x0 x1 x2 = x2 (proof)Theorem CD_proj1_FCD_proj1_F : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ x1 0 ⟶ ∀ x2 . x1 x2 ⟶ CD_proj1 x0 x1 x2 = 0 (proof)Definition CD_minusCD_minus := λ x0 . λ x1 : ι → ο . λ x2 : ι → ι . λ x3 . pair_tag x0 (x2 (CD_proj0 x0 x1 x3)) (x2 (CD_proj1 x0 x1 x3))Definition CD_conjCD_conj := λ x0 . λ x1 : ι → ο . λ x2 x3 : ι → ι . λ x4 . pair_tag x0 (x3 (CD_proj0 x0 x1 x4)) (x2 (CD_proj1 x0 x1 x4))Definition CD_addCD_add := λ x0 . λ x1 : ι → ο . λ x2 : ι → ι → ι . λ x3 x4 . pair_tag x0 (x2 (CD_proj0 x0 x1 x3) (CD_proj0 x0 x1 x4)) (x2 (CD_proj1 x0 x1 x3) (CD_proj1 x0 x1 x4))Definition CD_mulCD_mul := λ x0 . λ x1 : ι → ο . λ x2 x3 : ι → ι . λ x4 x5 : ι → ι → ι . λ x6 x7 . pair_tag x0 (x4 (x5 (CD_proj0 x0 x1 x6) (CD_proj0 x0 x1 x7)) (x2 (x5 (x3 (CD_proj1 x0 x1 x7)) (CD_proj1 x0 x1 x6)))) (x4 (x5 (CD_proj1 x0 x1 x7) (CD_proj0 x0 x1 x6)) (x5 (CD_proj1 x0 x1 x6) (x3 (CD_proj0 x0 x1 x7))))Param nat_primrecnat_primrec : ι → (ι → ι → ι) → ι → ιParam ordsuccordsucc : ι → ιDefinition CD_exp_natCD_exp_nat := λ x0 . λ x1 : ι → ο . λ x2 x3 : ι → ι . λ x4 x5 : ι → ι → ι . λ x6 . nat_primrec 1 (λ x7 . CD_mul x0 x1 x2 x3 x4 x5 x6)Theorem CD_minus_CDCD_minus_CD : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 : ι → ι . (∀ x3 . x1 x3 ⟶ x1 (x2 x3)) ⟶ ∀ x3 . CD_carr x0 x1 x3 ⟶ CD_carr x0 x1 (CD_minus x0 x1 x2 x3) (proof)Theorem CD_minus_proj0CD_minus_proj0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 : ι → ι . (∀ x3 . x1 x3 ⟶ x1 (x2 x3)) ⟶ ∀ x3 . CD_carr x0 x1 x3 ⟶ CD_proj0 x0 x1 (CD_minus x0 x1 x2 x3) = x2 (CD_proj0 x0 x1 x3) (proof)Theorem CD_minus_proj1CD_minus_proj1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 : ι → ι . (∀ x3 . x1 x3 ⟶ x1 (x2 x3)) ⟶ ∀ x3 . CD_carr x0 x1 x3 ⟶ CD_proj1 x0 x1 (CD_minus x0 x1 x2 x3) = x2 (CD_proj1 x0 x1 x3) (proof)Theorem CD_conj_CDCD_conj_CD : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 : ι → ι . (∀ x3 . x1 x3 ⟶ x1 (x2 x3)) ⟶ ∀ x3 : ι → ι . (∀ x4 . x1 x4 ⟶ x1 (x3 x4)) ⟶ ∀ x4 . CD_carr x0 x1 x4 ⟶ CD_carr x0 x1 (CD_conj x0 x1 x2 x3 x4) (proof)Theorem CD_conj_proj0CD_conj_proj0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 : ι → ι . (∀ x3 . x1 x3 ⟶ x1 (x2 x3)) ⟶ ∀ x3 : ι → ι . (∀ x4 . x1 x4 ⟶ x1 (x3 x4)) ⟶ ∀ x4 . CD_carr x0 x1 x4 ⟶ CD_proj0 x0 x1 (CD_conj x0 x1 x2 x3 x4) = x3 (CD_proj0 x0 x1 x4) (proof)Theorem CD_conj_proj1CD_conj_proj1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 : ι → ι . (∀ x3 . x1 x3 ⟶ x1 (x2 x3)) ⟶ ∀ x3 : ι → ι . (∀ x4 . x1 x4 ⟶ x1 (x3 x4)) ⟶ ∀ x4 . CD_carr x0 x1 x4 ⟶ CD_proj1 x0 x1 (CD_conj x0 x1 x2 x3 x4) = x2 (CD_proj1 x0 x1 x4) (proof)Theorem CD_add_CDCD_add_CD : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 : ι → ι → ι . (∀ x3 x4 . x1 x3 ⟶ x1 x4 ⟶ x1 (x2 x3 x4)) ⟶ ∀ x3 x4 . CD_carr x0 x1 x3 ⟶ CD_carr x0 x1 x4 ⟶ CD_carr x0 x1 (CD_add x0 x1 x2 x3 x4) (proof)Theorem CD_add_proj0CD_add_proj0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 : ι → ι → ι . (∀ x3 x4 . x1 x3 ⟶ x1 x4 ⟶ x1 (x2 x3 x4)) ⟶ ∀ x3 x4 . CD_carr x0 x1 x3 ⟶ CD_carr x0 x1 x4 ⟶ CD_proj0 x0 x1 (CD_add x0 x1 x2 x3 x4) = x2 (CD_proj0 x0 x1 x3) (CD_proj0 x0 x1 x4) (proof)Theorem CD_add_proj1CD_add_proj1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 : ι → ι → ι . (∀ x3 x4 . x1 x3 ⟶ x1 x4 ⟶ x1 (x2 x3 x4)) ⟶ ∀ x3 x4 . CD_carr x0 x1 x3 ⟶ CD_carr x0 x1 x4 ⟶ CD_proj1 x0 x1 (CD_add x0 x1 x2 x3 x4) = x2 (CD_proj1 x0 x1 x3) (CD_proj1 x0 x1 x4) (proof)Theorem CD_mul_CDCD_mul_CD : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6 ⟶ x1 (x2 x6)) ⟶ (∀ x6 . x1 x6 ⟶ x1 (x3 x6)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x4 x6 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x5 x6 x7)) ⟶ ∀ x6 x7 . CD_carr x0 x1 x6 ⟶ CD_carr x0 x1 x7 ⟶ CD_carr x0 x1 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7) (proof)Theorem CD_mul_proj0CD_mul_proj0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6 ⟶ x1 (x2 x6)) ⟶ (∀ x6 . x1 x6 ⟶ x1 (x3 x6)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x4 x6 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x5 x6 x7)) ⟶ ∀ x6 x7 . CD_carr x0 x1 x6 ⟶ CD_carr x0 x1 x7 ⟶ CD_proj0 x0 x1 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7) = x4 (x5 (CD_proj0 x0 x1 x6) (CD_proj0 x0 x1 x7)) (x2 (x5 (x3 (CD_proj1 x0 x1 x7)) (CD_proj1 x0 x1 x6))) (proof)Theorem CD_mul_proj1CD_mul_proj1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6 ⟶ x1 (x2 x6)) ⟶ (∀ x6 . x1 x6 ⟶ x1 (x3 x6)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x4 x6 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x5 x6 x7)) ⟶ ∀ x6 x7 . CD_carr x0 x1 x6 ⟶ CD_carr x0 x1 x7 ⟶ CD_proj1 x0 x1 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7) = x4 (x5 (CD_proj1 x0 x1 x7) (CD_proj0 x0 x1 x6)) (x5 (CD_proj1 x0 x1 x6) (x3 (CD_proj0 x0 x1 x7))) (proof)Theorem CD_minus_F_eqCD_minus_F_eq : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 : ι → ι . x1 0 ⟶ x2 0 = 0 ⟶ ∀ x3 . x1 x3 ⟶ CD_minus x0 x1 x2 x3 = x2 x3 (proof)Theorem CD_conj_F_eqCD_conj_F_eq : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 : ι → ι . x1 0 ⟶ x2 0 = 0 ⟶ ∀ x3 : ι → ι . ∀ x4 . x1 x4 ⟶ CD_conj x0 x1 x2 x3 x4 = x3 x4 (proof)Theorem CD_add_F_eqCD_add_F_eq : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 : ι → ι → ι . x1 0 ⟶ x2 0 0 = 0 ⟶ ∀ x3 x4 . x1 x3 ⟶ x1 x4 ⟶ CD_add x0 x1 x2 x3 x4 = x2 x3 x4 (proof)Theorem CD_mul_F_eqCD_mul_F_eq : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0 ⟶ (∀ x6 . x1 x6 ⟶ x1 (x3 x6)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x5 x6 x7)) ⟶ x2 0 = 0 ⟶ (∀ x6 . x1 x6 ⟶ x4 x6 0 = x6) ⟶ (∀ x6 . x1 x6 ⟶ x5 0 x6 = 0) ⟶ (∀ x6 . x1 x6 ⟶ x5 x6 0 = 0) ⟶ ∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ CD_mul x0 x1 x2 x3 x4 x5 x6 x7 = x5 x6 x7 (proof)Theorem CD_minus_involCD_minus_invol : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 : ι → ι . (∀ x3 . x1 x3 ⟶ x1 (x2 x3)) ⟶ (∀ x3 . x1 x3 ⟶ x2 (x2 x3) = x3) ⟶ ∀ x3 . CD_carr x0 x1 x3 ⟶ CD_minus x0 x1 x2 (CD_minus x0 x1 x2 x3) = x3 (proof)Theorem CD_conj_involCD_conj_invol : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 : ι → ι . (∀ x4 . x1 x4 ⟶ x1 (x2 x4)) ⟶ (∀ x4 . x1 x4 ⟶ x1 (x3 x4)) ⟶ (∀ x4 . x1 x4 ⟶ x2 (x2 x4) = x4) ⟶ (∀ x4 . x1 x4 ⟶ x3 (x3 x4) = x4) ⟶ ∀ x4 . CD_carr x0 x1 x4 ⟶ CD_conj x0 x1 x2 x3 (CD_conj x0 x1 x2 x3 x4) = x4 (proof)Theorem CD_conj_minusCD_conj_minus : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 : ι → ι . (∀ x4 . x1 x4 ⟶ x1 (x2 x4)) ⟶ (∀ x4 . x1 x4 ⟶ x1 (x3 x4)) ⟶ (∀ x4 . x1 x4 ⟶ x3 (x2 x4) = x2 (x3 x4)) ⟶ ∀ x4 . CD_carr x0 x1 x4 ⟶ CD_conj x0 x1 x2 x3 (CD_minus x0 x1 x2 x4) = CD_minus x0 x1 x2 (CD_conj x0 x1 x2 x3 x4) (proof)Theorem CD_minus_addCD_minus_add : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι . (∀ x4 . x1 x4 ⟶ x1 (x2 x4)) ⟶ (∀ x4 x5 . x1 x4 ⟶ x1 x5 ⟶ x1 (x3 x4 x5)) ⟶ (∀ x4 x5 . x1 x4 ⟶ x1 x5 ⟶ x2 (x3 x4 x5) = x3 (x2 x4) (x2 x5)) ⟶ ∀ x4 x5 . CD_carr x0 x1 x4 ⟶ CD_carr x0 x1 x5 ⟶ CD_minus x0 x1 x2 (CD_add x0 x1 x3 x4 x5) = CD_add x0 x1 x3 (CD_minus x0 x1 x2 x4) (CD_minus x0 x1 x2 x5) (proof)Theorem CD_conj_addCD_conj_add : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 : ι → ι . ∀ x4 : ι → ι → ι . (∀ x5 . x1 x5 ⟶ x1 (x2 x5)) ⟶ (∀ x5 . x1 x5 ⟶ x1 (x3 x5)) ⟶ (∀ x5 x6 . x1 x5 ⟶ x1 x6 ⟶ x1 (x4 x5 x6)) ⟶ (∀ x5 x6 . x1 x5 ⟶ x1 x6 ⟶ x2 (x4 x5 x6) = x4 (x2 x5) (x2 x6)) ⟶ (∀ x5 x6 . x1 x5 ⟶ x1 x6 ⟶ x3 (x4 x5 x6) = x4 (x3 x5) (x3 x6)) ⟶ ∀ x5 x6 . CD_carr x0 x1 x5 ⟶ CD_carr x0 x1 x6 ⟶ CD_conj x0 x1 x2 x3 (CD_add x0 x1 x4 x5 x6) = CD_add x0 x1 x4 (CD_conj x0 x1 x2 x3 x5) (CD_conj x0 x1 x2 x3 x6) (proof)Theorem CD_add_comCD_add_com : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 : ι → ι → ι . (∀ x3 x4 . x1 x3 ⟶ x1 x4 ⟶ x2 x3 x4 = x2 x4 x3) ⟶ ∀ x3 x4 . CD_carr x0 x1 x3 ⟶ CD_carr x0 x1 x4 ⟶ CD_add x0 x1 x2 x3 x4 = CD_add x0 x1 x2 x4 x3 (proof)Theorem CD_add_assocCD_add_assoc : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 : ι → ι → ι . (∀ x3 x4 . x1 x3 ⟶ x1 x4 ⟶ x1 (x2 x3 x4)) ⟶ (∀ x3 x4 x5 . x1 x3 ⟶ x1 x4 ⟶ x1 x5 ⟶ x2 (x2 x3 x4) x5 = x2 x3 (x2 x4 x5)) ⟶ ∀ x3 x4 x5 . CD_carr x0 x1 x3 ⟶ CD_carr x0 x1 x4 ⟶ CD_carr x0 x1 x5 ⟶ CD_add x0 x1 x2 (CD_add x0 x1 x2 x3 x4) x5 = CD_add x0 x1 x2 x3 (CD_add x0 x1 x2 x4 x5) (proof)Theorem CD_add_0RCD_add_0R : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 : ι → ι → ι . x1 0 ⟶ (∀ x3 . x1 x3 ⟶ x2 x3 0 = x3) ⟶ ∀ x3 . CD_carr x0 x1 x3 ⟶ CD_add x0 x1 x2 x3 0 = x3 (proof)Theorem CD_add_0LCD_add_0L : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 : ι → ι → ι . x1 0 ⟶ (∀ x3 . x1 x3 ⟶ x2 0 x3 = x3) ⟶ ∀ x3 . CD_carr x0 x1 x3 ⟶ CD_add x0 x1 x2 0 x3 = x3 (proof)Theorem CD_add_minus_linvCD_add_minus_linv : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι . (∀ x4 . x1 x4 ⟶ x1 (x2 x4)) ⟶ (∀ x4 . x1 x4 ⟶ x3 (x2 x4) x4 = 0) ⟶ ∀ x4 . CD_carr x0 x1 x4 ⟶ CD_add x0 x1 x3 (CD_minus x0 x1 x2 x4) x4 = 0 (proof)Theorem CD_add_minus_rinvCD_add_minus_rinv : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι . (∀ x4 . x1 x4 ⟶ x1 (x2 x4)) ⟶ (∀ x4 . x1 x4 ⟶ x3 x4 (x2 x4) = 0) ⟶ ∀ x4 . CD_carr x0 x1 x4 ⟶ CD_add x0 x1 x3 x4 (CD_minus x0 x1 x2 x4) = 0 (proof)Theorem CD_mul_0RCD_mul_0R : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0 ⟶ x2 0 = 0 ⟶ x3 0 = 0 ⟶ x4 0 0 = 0 ⟶ (∀ x6 . x1 x6 ⟶ x5 0 x6 = 0) ⟶ (∀ x6 . x1 x6 ⟶ x5 x6 0 = 0) ⟶ ∀ x6 . CD_carr x0 x1 x6 ⟶ CD_mul x0 x1 x2 x3 x4 x5 x6 0 = 0 (proof)Theorem CD_mul_0LCD_mul_0L : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0 ⟶ (∀ x6 . x1 x6 ⟶ x1 (x3 x6)) ⟶ x2 0 = 0 ⟶ x4 0 0 = 0 ⟶ (∀ x6 . x1 x6 ⟶ x5 0 x6 = 0) ⟶ (∀ x6 . x1 x6 ⟶ x5 x6 0 = 0) ⟶ ∀ x6 . CD_carr x0 x1 x6 ⟶ CD_mul x0 x1 x2 x3 x4 x5 0 x6 = 0 (proof)Theorem CD_mul_1RCD_mul_1R : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0 ⟶ x1 1 ⟶ x2 0 = 0 ⟶ x3 0 = 0 ⟶ x3 1 = 1 ⟶ (∀ x6 . x1 x6 ⟶ x4 0 x6 = x6) ⟶ (∀ x6 . x1 x6 ⟶ x4 x6 0 = x6) ⟶ (∀ x6 . x1 x6 ⟶ x5 0 x6 = 0) ⟶ (∀ x6 . x1 x6 ⟶ x5 x6 1 = x6) ⟶ ∀ x6 . CD_carr x0 x1 x6 ⟶ CD_mul x0 x1 x2 x3 x4 x5 x6 1 = x6 (proof)Theorem CD_mul_1LCD_mul_1L : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0 ⟶ x1 1 ⟶ (∀ x6 . x1 x6 ⟶ x1 (x3 x6)) ⟶ x2 0 = 0 ⟶ (∀ x6 . x1 x6 ⟶ x4 x6 0 = x6) ⟶ (∀ x6 . x1 x6 ⟶ x5 0 x6 = 0) ⟶ (∀ x6 . x1 x6 ⟶ x5 x6 0 = 0) ⟶ (∀ x6 . x1 x6 ⟶ x5 1 x6 = x6) ⟶ (∀ x6 . x1 x6 ⟶ x5 x6 1 = x6) ⟶ ∀ x6 . CD_carr x0 x1 x6 ⟶ CD_mul x0 x1 x2 x3 x4 x5 1 x6 = x6 (proof)Theorem CD_conj_mulCD_conj_mul : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6 ⟶ x1 (x2 x6)) ⟶ (∀ x6 . x1 x6 ⟶ x1 (x3 x6)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x4 x6 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x5 x6 x7)) ⟶ (∀ x6 . x1 x6 ⟶ x2 (x2 x6) = x6) ⟶ (∀ x6 . x1 x6 ⟶ x3 (x3 x6) = x6) ⟶ (∀ x6 . x1 x6 ⟶ x3 (x2 x6) = x2 (x3 x6)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x3 (x4 x6 x7) = x4 (x3 x6) (x3 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x4 x6 x7 = x4 x7 x6) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x3 (x5 x6 x7) = x5 (x3 x7) (x3 x6)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x5 x6 (x2 x7) = x2 (x5 x6 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x5 (x2 x6) x7 = x2 (x5 x6 x7)) ⟶ ∀ x6 x7 . CD_carr x0 x1 x6 ⟶ CD_carr x0 x1 x7 ⟶ CD_conj x0 x1 x2 x3 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7) = CD_mul x0 x1 x2 x3 x4 x5 (CD_conj x0 x1 x2 x3 x7) (CD_conj x0 x1 x2 x3 x6) (proof)Theorem CD_add_mul_distrRCD_add_mul_distrR : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6 ⟶ x1 (x2 x6)) ⟶ (∀ x6 . x1 x6 ⟶ x1 (x3 x6)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x4 x6 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x5 x6 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7)) ⟶ (∀ x6 x7 x8 . x1 x6 ⟶ x1 x7 ⟶ x1 x8 ⟶ x4 (x4 x6 x7) x8 = x4 x6 (x4 x7 x8)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x4 x6 x7 = x4 x7 x6) ⟶ (∀ x6 x7 x8 . x1 x6 ⟶ x1 x7 ⟶ x1 x8 ⟶ x5 x6 (x4 x7 x8) = x4 (x5 x6 x7) (x5 x6 x8)) ⟶ (∀ x6 x7 x8 . x1 x6 ⟶ x1 x7 ⟶ x1 x8 ⟶ x5 (x4 x6 x7) x8 = x4 (x5 x6 x8) (x5 x7 x8)) ⟶ ∀ x6 x7 x8 . CD_carr x0 x1 x6 ⟶ CD_carr x0 x1 x7 ⟶ CD_carr x0 x1 x8 ⟶ CD_mul x0 x1 x2 x3 x4 x5 (CD_add x0 x1 x4 x6 x7) x8 = CD_add x0 x1 x4 (CD_mul x0 x1 x2 x3 x4 x5 x6 x8) (CD_mul x0 x1 x2 x3 x4 x5 x7 x8) (proof)Theorem CD_add_mul_distrLCD_add_mul_distrL : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6 ⟶ x1 (x2 x6)) ⟶ (∀ x6 . x1 x6 ⟶ x1 (x3 x6)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x4 x6 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x5 x6 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x3 (x4 x6 x7) = x4 (x3 x6) (x3 x7)) ⟶ (∀ x6 x7 x8 . x1 x6 ⟶ x1 x7 ⟶ x1 x8 ⟶ x4 (x4 x6 x7) x8 = x4 x6 (x4 x7 x8)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x4 x6 x7 = x4 x7 x6) ⟶ (∀ x6 x7 x8 . x1 x6 ⟶ x1 x7 ⟶ x1 x8 ⟶ x5 x6 (x4 x7 x8) = x4 (x5 x6 x7) (x5 x6 x8)) ⟶ (∀ x6 x7 x8 . x1 x6 ⟶ x1 x7 ⟶ x1 x8 ⟶ x5 (x4 x6 x7) x8 = x4 (x5 x6 x8) (x5 x7 x8)) ⟶ ∀ x6 x7 x8 . CD_carr x0 x1 x6 ⟶ CD_carr x0 x1 x7 ⟶ CD_carr x0 x1 x8 ⟶ CD_mul x0 x1 x2 x3 x4 x5 x6 (CD_add x0 x1 x4 x7 x8) = CD_add x0 x1 x4 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7) (CD_mul x0 x1 x2 x3 x4 x5 x6 x8) (proof)Theorem CD_minus_mul_distrRCD_minus_mul_distrR : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6 ⟶ x1 (x2 x6)) ⟶ (∀ x6 . x1 x6 ⟶ x1 (x3 x6)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x4 x6 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x5 x6 x7)) ⟶ (∀ x6 . x1 x6 ⟶ x3 (x2 x6) = x2 (x3 x6)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x5 x6 (x2 x7) = x2 (x5 x6 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x5 (x2 x6) x7 = x2 (x5 x6 x7)) ⟶ ∀ x6 x7 . CD_carr x0 x1 x6 ⟶ CD_carr x0 x1 x7 ⟶ CD_mul x0 x1 x2 x3 x4 x5 x6 (CD_minus x0 x1 x2 x7) = CD_minus x0 x1 x2 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7) (proof)Theorem CD_minus_mul_distrLCD_minus_mul_distrL : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6 ⟶ x1 (x2 x6)) ⟶ (∀ x6 . x1 x6 ⟶ x1 (x3 x6)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x4 x6 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x5 x6 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x5 x6 (x2 x7) = x2 (x5 x6 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x5 (x2 x6) x7 = x2 (x5 x6 x7)) ⟶ ∀ x6 x7 . CD_carr x0 x1 x6 ⟶ CD_carr x0 x1 x7 ⟶ CD_mul x0 x1 x2 x3 x4 x5 (CD_minus x0 x1 x2 x6) x7 = CD_minus x0 x1 x2 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7) (proof)Known nat_primrec_0nat_primrec_0 : ∀ x0 . ∀ x1 : ι → ι → ι . nat_primrec x0 x1 0 = x0Theorem CD_exp_nat_0CD_exp_nat_0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . ∀ x6 . CD_exp_nat x0 x1 x2 x3 x4 x5 x6 0 = 1 (proof)Param nat_pnat_p : ι → οKnown nat_primrec_Snat_primrec_S : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . nat_p x2 ⟶ nat_primrec x0 x1 (ordsucc x2) = x1 x2 (nat_primrec x0 x1 x2)Theorem CD_exp_nat_SCD_exp_nat_S : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . ∀ x6 x7 . nat_p x7 ⟶ CD_exp_nat x0 x1 x2 x3 x4 x5 x6 (ordsucc x7) = CD_mul x0 x1 x2 x3 x4 x5 x6 (CD_exp_nat x0 x1 x2 x3 x4 x5 x6 x7) (proof)Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0 ⟶ (∀ x1 . nat_p x1 ⟶ x0 x1 ⟶ x0 (ordsucc x1)) ⟶ ∀ x1 . nat_p x1 ⟶ x0 x1Theorem CD_exp_nat_CDCD_exp_nat_CD : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6 ⟶ x1 (x2 x6)) ⟶ (∀ x6 . x1 x6 ⟶ x1 (x3 x6)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x4 x6 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x5 x6 x7)) ⟶ x1 0 ⟶ x1 1 ⟶ ∀ x6 . CD_carr x0 x1 x6 ⟶ ∀ x7 . nat_p x7 ⟶ CD_carr x0 x1 (CD_exp_nat x0 x1 x2 x3 x4 x5 x6 x7) (proof)
|
|