Search for blocks/addresses/...

Proofgold Proposition

∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . SNo x0SNo x1(∀ x4 . x4SNoS_ (SNoLev x0)∀ x5 . SNo x5x2 x4 x5 = x3 x4 x5){add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoL x1)} = {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoL x1)}{add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoR x1)} = {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoR x1)}{add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoR x1)} = {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoR x1)}{add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoL x1)} = {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoL x1)}SNoCut (binunion {add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoL x1)} {add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoR x1)}) (binunion {add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoR x1)} {add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoL x1)}) = SNoCut (binunion {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoL x1)} {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoR x1)}) (binunion {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoR x1)} {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoL x1)})
type
prop
theory
HotG
name
-
proof
PURzn..
Megalodon
Conj_mul_SNo_eq__25__3
proofgold address
TMPpy..Conj_mul_SNo_eq__25__3
creator
35045 PrNpY../edbb1..
owner
35047 PrNpY../d3773..
term root
aae1c..