Search for blocks/addresses/...

Proofgold Address

address
PURznaAAQp4Y7VWtq1o8tgV4t8GySAbj2eU
total
0
mg
-
conjpub
-
current assets
ffbf3../acdf0.. bday: 35045 doc published by PrNpY..
Param realreal : ι
Param setexpsetexp : ιιι
Param SNoS_SNoS_ : ιι
Param omegaomega : ι
Param SNoLtSNoLt : ιιο
Param apap : ιιι
Param add_SNoadd_SNo : ιιι
Param eps_eps_ : ιι
Param minus_SNominus_SNo : ιι
Param SNoSNo : ιο
Param abs_SNoabs_SNo : ιι
Known real_add_SNoreal_add_SNo : ∀ x0 . x0real∀ x1 . x1realadd_SNo x0 x1real
Theorem 34bd0..Conj_real_add_SNo__44__7 : ∀ x0 x1 x2 x3 x4 x5 . x0realx1realx2setexp (SNoS_ omega) omegax3setexp (SNoS_ omega) omega(∀ x6 . x6omegaSNoLt (ap x2 x6) x0)(∀ x6 . x6omegaSNoLt x0 (add_SNo (ap x2 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x2 x7) (ap x2 x6))(∀ x6 . x6omegaSNoLt x0 (ap x3 x6))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x3 x6) (ap x3 x7))x4setexp (SNoS_ omega) omegax5setexp (SNoS_ omega) omega(∀ x6 . x6omegaSNoLt (ap x4 x6) x1)(∀ x6 . x6omegaSNoLt x1 (add_SNo (ap x4 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x4 x7) (ap x4 x6))(∀ x6 . x6omegaSNoLt (add_SNo (ap x5 x6) (minus_SNo (eps_ x6))) x1)(∀ x6 . x6omegaSNoLt x1 (ap x5 x6))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x5 x6) (ap x5 x7))SNo x0SNo x1SNo (add_SNo x0 x1)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x0))) (eps_ x7))x6 = x0)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x1))) (eps_ x7))x6 = x1)add_SNo x0 x1real (proof)
Param ordsuccordsucc : ιι
Theorem c4ebc..Conj_real_add_SNo__43__10 : ∀ x0 x1 x2 x3 x4 x5 . x0realx1realx2setexp (SNoS_ omega) omegax3setexp (SNoS_ omega) omega(∀ x6 . x6omegaSNoLt (ap x2 x6) x0)(∀ x6 . x6omegaSNoLt x0 (add_SNo (ap x2 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x2 x7) (ap x2 x6))(∀ x6 . x6omegaSNoLt (add_SNo (ap x3 x6) (minus_SNo (eps_ x6))) x0)(∀ x6 . x6omegaSNoLt x0 (ap x3 x6))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x3 x6) (ap x3 x7))x5setexp (SNoS_ omega) omega(∀ x6 . x6omegaSNoLt (ap x4 x6) x1)(∀ x6 . x6omegaSNoLt x1 (add_SNo (ap x4 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x4 x7) (ap x4 x6))(∀ x6 . x6omegaSNoLt (add_SNo (ap x5 x6) (minus_SNo (eps_ x6))) x1)(∀ x6 . x6omegaSNoLt x1 (ap x5 x6))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x5 x6) (ap x5 x7))SNo x0SNo x1SNo (add_SNo x0 x1)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x0))) (eps_ x7))x6 = x0)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x1))) (eps_ x7))x6 = x1)(∀ x6 . x6omegaap x2 (ordsucc x6)SNoS_ omega)add_SNo x0 x1real (proof)
Theorem 59aa9..Conj_real_add_SNo__40__19 : ∀ x0 x1 x2 x3 x4 x5 . x0realx1realx3setexp (SNoS_ omega) omega(∀ x6 . x6omegaSNoLt (ap x2 x6) x0)(∀ x6 . x6omegaSNoLt x0 (add_SNo (ap x2 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x2 x7) (ap x2 x6))(∀ x6 . x6omegaSNoLt (add_SNo (ap x3 x6) (minus_SNo (eps_ x6))) x0)(∀ x6 . x6omegaSNoLt x0 (ap x3 x6))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x3 x6) (ap x3 x7))x5setexp (SNoS_ omega) omega(∀ x6 . x6omegaSNoLt (ap x4 x6) x1)(∀ x6 . x6omegaSNoLt x1 (add_SNo (ap x4 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x4 x7) (ap x4 x6))(∀ x6 . x6omegaSNoLt (add_SNo (ap x5 x6) (minus_SNo (eps_ x6))) x1)(∀ x6 . x6omegaSNoLt x1 (ap x5 x6))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x5 x6) (ap x5 x7))SNo x0SNo x1SNo (add_SNo x0 x1)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x1))) (eps_ x7))x6 = x1)(∀ x6 . x6omegaap x2 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x2 (ordsucc x6)))(∀ x6 . x6omegaap x4 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x4 (ordsucc x6)))add_SNo x0 x1real (proof)
Theorem bce5d..Conj_real_add_SNo__41__9 : ∀ x0 x1 x2 x3 x4 x5 . x0realx1realx3setexp (SNoS_ omega) omega(∀ x6 . x6omegaSNoLt (ap x2 x6) x0)(∀ x6 . x6omegaSNoLt x0 (add_SNo (ap x2 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x2 x7) (ap x2 x6))(∀ x6 . x6omegaSNoLt (add_SNo (ap x3 x6) (minus_SNo (eps_ x6))) x0)(∀ x6 . x6omegaSNoLt x0 (ap x3 x6))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x3 x6) (ap x3 x7))x5setexp (SNoS_ omega) omega(∀ x6 . x6omegaSNoLt (ap x4 x6) x1)(∀ x6 . x6omegaSNoLt x1 (add_SNo (ap x4 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x4 x7) (ap x4 x6))(∀ x6 . x6omegaSNoLt (add_SNo (ap x5 x6) (minus_SNo (eps_ x6))) x1)(∀ x6 . x6omegaSNoLt x1 (ap x5 x6))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x5 x6) (ap x5 x7))SNo x0SNo x1SNo (add_SNo x0 x1)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x0))) (eps_ x7))x6 = x0)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x1))) (eps_ x7))x6 = x1)(∀ x6 . x6omegaap x2 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x2 (ordsucc x6)))(∀ x6 . x6omegaap x4 (ordsucc x6)SNoS_ omega)add_SNo x0 x1real (proof)
Theorem d6042..Conj_real_add_SNo__40__2 : ∀ x0 x1 x2 x3 x4 x5 . x0realx1real(∀ x6 . x6omegaSNoLt (ap x2 x6) x0)(∀ x6 . x6omegaSNoLt x0 (add_SNo (ap x2 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x2 x7) (ap x2 x6))(∀ x6 . x6omegaSNoLt (add_SNo (ap x3 x6) (minus_SNo (eps_ x6))) x0)(∀ x6 . x6omegaSNoLt x0 (ap x3 x6))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x3 x6) (ap x3 x7))x5setexp (SNoS_ omega) omega(∀ x6 . x6omegaSNoLt (ap x4 x6) x1)(∀ x6 . x6omegaSNoLt x1 (add_SNo (ap x4 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x4 x7) (ap x4 x6))(∀ x6 . x6omegaSNoLt (add_SNo (ap x5 x6) (minus_SNo (eps_ x6))) x1)(∀ x6 . x6omegaSNoLt x1 (ap x5 x6))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x5 x6) (ap x5 x7))SNo x0SNo x1SNo (add_SNo x0 x1)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x0))) (eps_ x7))x6 = x0)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x1))) (eps_ x7))x6 = x1)(∀ x6 . x6omegaap x2 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x2 (ordsucc x6)))(∀ x6 . x6omegaap x4 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x4 (ordsucc x6)))add_SNo x0 x1real (proof)
Theorem 786e0..Conj_real_add_SNo__37__9 : ∀ x0 x1 x2 x3 x4 x5 . x0realx1real(∀ x6 . x6omegaSNoLt (ap x2 x6) x0)(∀ x6 . x6omegaSNoLt x0 (add_SNo (ap x2 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x2 x7) (ap x2 x6))(∀ x6 . x6omegaSNoLt (add_SNo (ap x3 x6) (minus_SNo (eps_ x6))) x0)(∀ x6 . x6omegaSNoLt x0 (ap x3 x6))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x3 x6) (ap x3 x7))x5setexp (SNoS_ omega) omega(∀ x6 . x6omegaSNoLt x1 (add_SNo (ap x4 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x4 x7) (ap x4 x6))(∀ x6 . x6omegaSNoLt (add_SNo (ap x5 x6) (minus_SNo (eps_ x6))) x1)(∀ x6 . x6omegaSNoLt x1 (ap x5 x6))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x5 x6) (ap x5 x7))SNo x0SNo x1SNo (add_SNo x0 x1)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x0))) (eps_ x7))x6 = x0)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x1))) (eps_ x7))x6 = x1)(∀ x6 . x6omegaap x2 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x2 (ordsucc x6)))(∀ x6 . x6omegaap x4 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x4 (ordsucc x6)))(∀ x6 . x6omegaap x3 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x3 (ordsucc x6)))(∀ x6 . x6omegaap x5 (ordsucc x6)SNoS_ omega)add_SNo x0 x1real (proof)
Theorem 5c476..Conj_real_add_SNo__36__12 : ∀ x0 x1 x2 x3 x4 x5 . x0realx1real(∀ x6 . x6omegaSNoLt (ap x2 x6) x0)(∀ x6 . x6omegaSNoLt x0 (add_SNo (ap x2 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x2 x7) (ap x2 x6))(∀ x6 . x6omegaSNoLt (add_SNo (ap x3 x6) (minus_SNo (eps_ x6))) x0)(∀ x6 . x6omegaSNoLt x0 (ap x3 x6))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x3 x6) (ap x3 x7))(∀ x6 . x6omegaSNoLt (ap x4 x6) x1)(∀ x6 . x6omegaSNoLt x1 (add_SNo (ap x4 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x4 x7) (ap x4 x6))(∀ x6 . x6omegaSNoLt (add_SNo (ap x5 x6) (minus_SNo (eps_ x6))) x1)(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x5 x6) (ap x5 x7))SNo x0SNo x1SNo (add_SNo x0 x1)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x0))) (eps_ x7))x6 = x0)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x1))) (eps_ x7))x6 = x1)(∀ x6 . x6omegaap x2 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x2 (ordsucc x6)))(∀ x6 . x6omegaap x4 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x4 (ordsucc x6)))(∀ x6 . x6omegaap x3 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x3 (ordsucc x6)))(∀ x6 . x6omegaap x5 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x5 (ordsucc x6)))add_SNo x0 x1real (proof)
Theorem ec53b..Conj_real_add_SNo__36__15 : ∀ x0 x1 x2 x3 x4 x5 . x0realx1real(∀ x6 . x6omegaSNoLt (ap x2 x6) x0)(∀ x6 . x6omegaSNoLt x0 (add_SNo (ap x2 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x2 x7) (ap x2 x6))(∀ x6 . x6omegaSNoLt (add_SNo (ap x3 x6) (minus_SNo (eps_ x6))) x0)(∀ x6 . x6omegaSNoLt x0 (ap x3 x6))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x3 x6) (ap x3 x7))(∀ x6 . x6omegaSNoLt (ap x4 x6) x1)(∀ x6 . x6omegaSNoLt x1 (add_SNo (ap x4 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x4 x7) (ap x4 x6))(∀ x6 . x6omegaSNoLt (add_SNo (ap x5 x6) (minus_SNo (eps_ x6))) x1)(∀ x6 . x6omegaSNoLt x1 (ap x5 x6))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x5 x6) (ap x5 x7))SNo x0SNo (add_SNo x0 x1)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x0))) (eps_ x7))x6 = x0)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x1))) (eps_ x7))x6 = x1)(∀ x6 . x6omegaap x2 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x2 (ordsucc x6)))(∀ x6 . x6omegaap x4 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x4 (ordsucc x6)))(∀ x6 . x6omegaap x3 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x3 (ordsucc x6)))(∀ x6 . x6omegaap x5 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x5 (ordsucc x6)))add_SNo x0 x1real (proof)
Param SNoLevSNoLev : ιι
Param setprodsetprod : ιιι
Param SNoLSNoL : ιι
Param SNoRSNoR : ιι
Param SNoCutSNoCut : ιιι
Param binunionbinunion : ιιι
Theorem 7cb2e..Conj_mul_SNo_eq__25__3 : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . SNo x0SNo x1(∀ x4 . x4SNoS_ (SNoLev x0)∀ x5 . SNo x5x2 x4 x5 = x3 x4 x5){add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoL x1)} = {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoL x1)}{add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoR x1)} = {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoR x1)}{add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoR x1)} = {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoR x1)}{add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoL x1)} = {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoL x1)}SNoCut (binunion {add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoL x1)} {add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoR x1)}) (binunion {add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoR x1)} {add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoL x1)}) = SNoCut (binunion {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoL x1)} {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoR x1)}) (binunion {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoR x1)} {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoL x1)}) (proof)
Theorem 7e49d..Conj_mul_SNo_eq__25__0 : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . SNo x1(∀ x4 . x4SNoS_ (SNoLev x0)∀ x5 . SNo x5x2 x4 x5 = x3 x4 x5)(∀ x4 . x4SNoS_ (SNoLev x1)x2 x0 x4 = x3 x0 x4){add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoL x1)} = {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoL x1)}{add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoR x1)} = {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoR x1)}{add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoR x1)} = {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoR x1)}{add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoL x1)} = {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoL x1)}SNoCut (binunion {add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoL x1)} {add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoR x1)}) (binunion {add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoR x1)} {add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoL x1)}) = SNoCut (binunion {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoL x1)} {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoR x1)}) (binunion {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoR x1)} {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoL x1)}) (proof)
Param SepSep : ι(ιο) → ι
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Theorem 98ac0..Conj_KnasterTarski_set__3__0 : ∀ x0 . ∀ x1 : ι → ι . {x2 ∈ x0|∀ x3 . x3prim4 x0x1 x3x3x2x3}prim4 x0x1 {x2 ∈ x0|∀ x3 . x3prim4 x0x1 x3x3x2x3}prim4 x0(∀ x2 . x2prim4 x0x1 x2x2{x3 ∈ x0|∀ x4 . x4prim4 x0x1 x4x4x3x4}x2)x1 {x2 ∈ x0|∀ x3 . x3prim4 x0x1 x3x3x2x3}{x2 ∈ x0|∀ x3 . x3prim4 x0x1 x3x3x2x3}x1 (x1 {x2 ∈ x0|∀ x3 . x3prim4 x0x1 x3x3x2x3})x1 {x2 ∈ x0|∀ x3 . x3prim4 x0x1 x3x3x2x3}∀ x2 : ο . (∀ x3 . and (x3prim4 x0) (x1 x3 = x3)x2)x2 (proof)
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Theorem 24d2c..Conj_PigeonHole_nat__1__0 : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 x4 . x3ordsucc (ordsucc x0)ordsucc x4ordsucc (ordsucc x0)not (x2x3)x2x4x1 x3 = x1 (ordsucc x4)x3 = ordsucc x4∀ x5 : ο . x5 (proof)
Param If_iIf_i : οιιι
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Known FalseEFalseE : False∀ x0 : ο . x0
Definition nInnIn := λ x0 x1 . not (x0x1)
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Theorem 814b8..Conj_PigeonHole_nat_bij__2__2 : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 x4 . (∀ x5 . x5x0∀ x6 . x6x0x1 x5 = x1 x6x5 = x6)not (∀ x5 : ο . (∀ x6 . and (x6x0) (x1 x6 = x2)x5)x5)x4ordsucc x0((x3 = x0∀ x5 : ο . x5)x3x0)If_i (x3 = x0) x2 (x1 x3) = If_i (x4 = x0) x2 (x1 x4)x3 = x4 (proof)
Definition TransSetTransSet := λ x0 . ∀ x1 . x1x0x1x0
Definition ordinalordinal := λ x0 . and (TransSet x0) (∀ x1 . x1x0TransSet x1)
Param PNo_strict_imvPNo_strict_imv : (ι(ιο) → ο) → (ι(ιο) → ο) → ι(ιο) → ο
Param PNo_strict_lowerbdPNo_strict_lowerbd : (ι(ιο) → ο) → ι(ιο) → ο
Param PNo_strict_upperbdPNo_strict_upperbd : (ι(ιο) → ο) → ι(ιο) → ο
Param iffiff : οοο
Known ordinal_Heredordinal_Hered : ∀ x0 . ordinal x0∀ x1 . x1x0ordinal x1
Theorem d71fb..Conj_PNo_strict_imv_pred_eq__6__3 : ∀ x0 x1 : ι → (ι → ο) → ο . ∀ x2 . ∀ x3 x4 : ι → ο . ordinal x2TransSet x2(∀ x5 . x5x2∀ x6 : ι → ο . not (PNo_strict_imv x0 x1 x5 x6))PNo_strict_lowerbd x1 x2 x3PNo_strict_upperbd x0 x2 x4PNo_strict_lowerbd x1 x2 x4(∀ x5 . ordinal x5x5x2iff (x3 x5) (x4 x5))∀ x5 . x5x2iff (x3 x5) (x4 x5) (proof)
Param PNo_bdPNo_bd : (ι(ιο) → ο) → (ι(ιο) → ο) → ι
Theorem 33d61..Conj_PNo_bd_In__1__3 : ∀ x0 x1 : ι → (ι → ο) → ο . ∀ x2 x3 . ∀ x4 : ι → ο . (∀ x5 . x5PNo_bd x0 x1∀ x6 : ι → ο . not (PNo_strict_imv x0 x1 x5 x6))x3ordsucc x2PNo_strict_imv x0 x1 x3 x4not (x3PNo_bd x0 x1) (proof)
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Theorem 79465..Conj_SNo_etaE__5__1 : ∀ x0 x1 x2 . SNoLt x0 x1SNo x1SNoLev x1 = x2SNoLev x1SNoLev x0and (and (SNo x1) (SNoLev x1SNoLev x0)) (SNoLt x0 x1) (proof)
Param SNo_rec_iSNo_rec_i : (ι(ιι) → ι) → ιι
Param SNo_SNo_ : ιιο
Known SNoS_ISNoS_I : ∀ x0 . ordinal x0∀ x1 x2 . x2x0SNo_ x2 x1x1SNoS_ x0
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Known SNoLev_SNoLev_ : ∀ x0 . SNo x0SNo_ (SNoLev x0) x0
Known ordinal_ordsuccordinal_ordsucc : ∀ x0 . ordinal x0ordinal (ordsucc x0)
Known SNoLev_ordinalSNoLev_ordinal : ∀ x0 . SNo x0ordinal (SNoLev x0)
Theorem 85918..Conj_SNo_rec2_eq__1__1 : ∀ x0 : ι → ι → (ι → ι → ι) → ι . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 . (∀ x5 . SNo x5∀ x6 . SNo x6∀ x7 x8 : ι → ι → ι . (∀ x9 . x9SNoS_ (SNoLev x5)∀ x10 . SNo x10x7 x9 x10 = x8 x9 x10)(∀ x9 . x9SNoS_ (SNoLev x6)x7 x5 x9 = x8 x5 x9)x0 x5 x6 x7 = x0 x5 x6 x8)(∀ x5 . x5SNoS_ (SNoLev x1)x2 x5 = x3 x5)SNo x4(∀ x5 . ordinal x5∀ x6 . x6SNoS_ x5SNo_rec_i (λ x8 . λ x9 : ι → ι . x0 x1 x8 (λ x10 x11 . If_i (x10 = x1) (x9 x11) (x2 x10 x11))) x6 = SNo_rec_i (λ x8 . λ x9 : ι → ι . x0 x1 x8 (λ x10 x11 . If_i (x10 = x1) (x9 x11) (x3 x10 x11))) x6)SNo_rec_i (λ x6 . λ x7 : ι → ι . x0 x1 x6 (λ x8 x9 . If_i (x8 = x1) (x7 x9) (x2 x8 x9))) x4 = SNo_rec_i (λ x6 . λ x7 : ι → ι . x0 x1 x6 (λ x8 x9 . If_i (x8 = x1) (x7 x9) (x3 x8 x9))) x4 (proof)
Param SNoCutPSNoCutP : ιιο
Theorem e0a4a..Conj_minus_SNo_prop1__2__2 : ∀ x0 x1 . SNo x0(∀ x2 . x2SNoS_ (SNoLev x0)and (and (and (SNo (minus_SNo x2)) (∀ x3 . x3SNoL x2SNoLt (minus_SNo x2) (minus_SNo x3))) (∀ x3 . x3SNoR x2SNoLt (minus_SNo x3) (minus_SNo x2))) (SNoCutP (prim5 (SNoR x2) minus_SNo) (prim5 (SNoL x2) minus_SNo)))SNoLev x1SNoLev x0x1SNoS_ (SNoLev x0)and (and (SNo (minus_SNo x1)) (∀ x2 . x2SNoL x1SNoLt (minus_SNo x1) (minus_SNo x2))) (∀ x2 . x2SNoR x1SNoLt (minus_SNo x2) (minus_SNo x1)) (proof)
Known and4Iand4I : ∀ x0 x1 x2 x3 : ο . x0x1x2x3and (and (and x0 x1) x2) x3
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known SNoL_ESNoL_E : ∀ x0 . SNo x0∀ x1 . x1SNoL x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x2)x2
Known minus_SNo_Lt_contraminus_SNo_Lt_contra : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1SNoLt (minus_SNo x1) (minus_SNo x0)
Known SNoR_ESNoR_E : ∀ x0 . SNo x0∀ x1 . x1SNoR x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x2)x2
Theorem cf6dd..Conj_minus_SNo_prop1__9__3 : ∀ x0 . SNo x0(∀ x1 . x1SNoS_ (SNoLev x0)and (and (and (SNo (minus_SNo x1)) (∀ x2 . x2SNoL x1SNoLt (minus_SNo x1) (minus_SNo x2))) (∀ x2 . x2SNoR x1SNoLt (minus_SNo x2) (minus_SNo x1))) (SNoCutP (prim5 (SNoR x1) minus_SNo) (prim5 (SNoL x1) minus_SNo)))(∀ x1 . x1SNoL x0and (and (SNo (minus_SNo x1)) (∀ x2 . x2SNoL x1SNoLt (minus_SNo x1) (minus_SNo x2))) (∀ x2 . x2SNoR x1SNoLt (minus_SNo x2) (minus_SNo x1)))SNoCutP (prim5 (SNoR x0) minus_SNo) (prim5 (SNoL x0) minus_SNo)and (and (and (SNo (minus_SNo x0)) (∀ x1 . x1SNoL x0SNoLt (minus_SNo x0) (minus_SNo x1))) (∀ x1 . x1SNoR x0SNoLt (minus_SNo x1) (minus_SNo x0))) (SNoCutP (prim5 (SNoR x0) minus_SNo) (prim5 (SNoL x0) minus_SNo)) (proof)
Known minus_SNo_Lev_lem2minus_SNo_Lev_lem2 : ∀ x0 . SNo x0SNoLev (minus_SNo x0)SNoLev x0
Theorem 49f1d..Conj_minus_SNo_Lev_lem1__22__2 : ∀ x0 x1 . TransSet x0(∀ x2 . x2x0∀ x3 . x3SNoS_ x2SNoLev (minus_SNo x3)SNoLev x3)ordinal (SNoLev x1)SNo x1SNoCutP (prim5 (SNoR x1) minus_SNo) (prim5 (SNoL x1) minus_SNo)SNoLev (minus_SNo x1)SNoLev x1 (proof)
Known add_SNo_ordinal_SLadd_SNo_ordinal_SL : ∀ x0 . ordinal x0∀ x1 . ordinal x1add_SNo (ordsucc x0) x1 = ordsucc (add_SNo x0 x1)
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Theorem 4d514..Conj_add_SNo_ordinal_SL__14__0 : ∀ x0 x1 . ordinal x1(∀ x2 . x2x1add_SNo (ordsucc x0) x2 = ordsucc (add_SNo x0 x2))SNo x0SNo x1ordinal (add_SNo x0 x1)ordinal (ordsucc x0)SNo (ordsucc x0)add_SNo (ordsucc x0) x1 = ordsucc (add_SNo x0 x1) (proof)
Theorem 36a11..Conj_mul_SNo_eq__19__0 : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 . x4SNoS_ (SNoLev x0)SNo x5x2 x4 x1 = x3 x4 x1x2 x0 x5 = x3 x0 x5x2 x4 x5 = x3 x4 x5add_SNo (x2 x4 x1) (add_SNo (x2 x0 x5) (minus_SNo (x2 x4 x5))) = add_SNo (x3 x4 x1) (add_SNo (x3 x0 x5) (minus_SNo (x3 x4 x5))) (proof)
Theorem e4f91..Conj_mul_SNo_eq__20__3 : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 . (∀ x6 . x6SNoS_ (SNoLev x0)∀ x7 . SNo x7x2 x6 x7 = x3 x6 x7)(∀ x6 . x6SNoS_ (SNoLev x1)x2 x0 x6 = x3 x0 x6)x4SNoS_ (SNoLev x0)SNo x5x2 x4 x1 = x3 x4 x1x2 x0 x5 = x3 x0 x5add_SNo (x2 x4 x1) (add_SNo (x2 x0 x5) (minus_SNo (x2 x4 x5))) = add_SNo (x3 x4 x1) (add_SNo (x3 x0 x5) (minus_SNo (x3 x4 x5))) (proof)
Theorem 36a11..Conj_mul_SNo_eq__19__0 : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 . x4SNoS_ (SNoLev x0)SNo x5x2 x4 x1 = x3 x4 x1x2 x0 x5 = x3 x0 x5x2 x4 x5 = x3 x4 x5add_SNo (x2 x4 x1) (add_SNo (x2 x0 x5) (minus_SNo (x2 x4 x5))) = add_SNo (x3 x4 x1) (add_SNo (x3 x0 x5) (minus_SNo (x3 x4 x5))) (proof)
Theorem e4f91..Conj_mul_SNo_eq__20__3 : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 . (∀ x6 . x6SNoS_ (SNoLev x0)∀ x7 . SNo x7x2 x6 x7 = x3 x6 x7)(∀ x6 . x6SNoS_ (SNoLev x1)x2 x0 x6 = x3 x0 x6)x4SNoS_ (SNoLev x0)SNo x5x2 x4 x1 = x3 x4 x1x2 x0 x5 = x3 x0 x5add_SNo (x2 x4 x1) (add_SNo (x2 x0 x5) (minus_SNo (x2 x4 x5))) = add_SNo (x3 x4 x1) (add_SNo (x3 x0 x5) (minus_SNo (x3 x4 x5))) (proof)
Theorem 36a11..Conj_mul_SNo_eq__19__0 : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 . x4SNoS_ (SNoLev x0)SNo x5x2 x4 x1 = x3 x4 x1x2 x0 x5 = x3 x0 x5x2 x4 x5 = x3 x4 x5add_SNo (x2 x4 x1) (add_SNo (x2 x0 x5) (minus_SNo (x2 x4 x5))) = add_SNo (x3 x4 x1) (add_SNo (x3 x0 x5) (minus_SNo (x3 x4 x5))) (proof)
Theorem e4f91..Conj_mul_SNo_eq__20__3 : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 . (∀ x6 . x6SNoS_ (SNoLev x0)∀ x7 . SNo x7x2 x6 x7 = x3 x6 x7)(∀ x6 . x6SNoS_ (SNoLev x1)x2 x0 x6 = x3 x0 x6)x4SNoS_ (SNoLev x0)SNo x5x2 x4 x1 = x3 x4 x1x2 x0 x5 = x3 x0 x5add_SNo (x2 x4 x1) (add_SNo (x2 x0 x5) (minus_SNo (x2 x4 x5))) = add_SNo (x3 x4 x1) (add_SNo (x3 x0 x5) (minus_SNo (x3 x4 x5))) (proof)
Theorem 3816f..Conj_mul_SNo_eq__22__3 : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 . SNo x1(∀ x6 . x6SNoS_ (SNoLev x0)∀ x7 . SNo x7x2 x6 x7 = x3 x6 x7)(∀ x6 . x6SNoS_ (SNoLev x1)x2 x0 x6 = x3 x0 x6)x4SNoS_ (SNoLev x0)x5SNoS_ (SNoLev x1)SNo x5add_SNo (x2 x4 x1) (add_SNo (x2 x0 x5) (minus_SNo (x2 x4 x5))) = add_SNo (x3 x4 x1) (add_SNo (x3 x0 x5) (minus_SNo (x3 x4 x5))) (proof)
Known SNoR_SNoS_SNoR_SNoS_ : ∀ x0 . SNoR x0SNoS_ (SNoLev x0)
Theorem a3487..Conj_mul_SNo_eq__18__4 : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 . SNo x0SNo x1(∀ x6 . x6SNoS_ (SNoLev x0)∀ x7 . SNo x7x2 x6 x7 = x3 x6 x7)(∀ x6 . x6SNoS_ (SNoLev x1)x2 x0 x6 = x3 x0 x6)x5SNoR x1x4SNoS_ (SNoLev x0)add_SNo (x2 x4 x1) (add_SNo (x2 x0 x5) (minus_SNo (x2 x4 x5))) = add_SNo (x3 x4 x1) (add_SNo (x3 x0 x5) (minus_SNo (x3 x4 x5))) (proof)
Theorem 36a11..Conj_mul_SNo_eq__19__0 : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 . x4SNoS_ (SNoLev x0)SNo x5x2 x4 x1 = x3 x4 x1x2 x0 x5 = x3 x0 x5x2 x4 x5 = x3 x4 x5add_SNo (x2 x4 x1) (add_SNo (x2 x0 x5) (minus_SNo (x2 x4 x5))) = add_SNo (x3 x4 x1) (add_SNo (x3 x0 x5) (minus_SNo (x3 x4 x5))) (proof)
Theorem e4f91..Conj_mul_SNo_eq__20__3 : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 . (∀ x6 . x6SNoS_ (SNoLev x0)∀ x7 . SNo x7x2 x6 x7 = x3 x6 x7)(∀ x6 . x6SNoS_ (SNoLev x1)x2 x0 x6 = x3 x0 x6)x4SNoS_ (SNoLev x0)SNo x5x2 x4 x1 = x3 x4 x1x2 x0 x5 = x3 x0 x5add_SNo (x2 x4 x1) (add_SNo (x2 x0 x5) (minus_SNo (x2 x4 x5))) = add_SNo (x3 x4 x1) (add_SNo (x3 x0 x5) (minus_SNo (x3 x4 x5))) (proof)
Param mul_SNomul_SNo : ιιι
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Theorem 3cff7..Conj_mul_SNo_SNoR_interpolate__4__3 : ∀ x0 x1 x2 x3 x4 x5 . SNo x2SNo x3SNoLt x3 x2SNoLt (add_SNo x2 (mul_SNo x4 x5)) (add_SNo x3 (mul_SNo x4 x5))SNoLt x2 x3SNoLt x3 (mul_SNo x0 x1) (proof)
Theorem 3cff7..Conj_mul_SNo_SNoR_interpolate__4__3 : ∀ x0 x1 x2 x3 x4 x5 . SNo x2SNo x3SNoLt x3 x2SNoLt (add_SNo x2 (mul_SNo x4 x5)) (add_SNo x3 (mul_SNo x4 x5))SNoLt x2 x3SNoLt x3 (mul_SNo x0 x1) (proof)
Known double_eps_1double_eps_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 x0 = add_SNo x1 x2x0 = mul_SNo (eps_ 1) (add_SNo x1 x2)
Theorem 7bd1d..Conj_double_eps_1__1__1 : ∀ x0 x1 x2 . SNo x0SNo x2add_SNo x0 x0 = add_SNo x1 x2SNo (add_SNo x1 x2)x0 = mul_SNo (eps_ 1) (add_SNo x1 x2) (proof)
Param SNoLeSNoLe : ιιο
Theorem fb18d..Conj_SNo_approx_real_rep__1__0 : ∀ x0 x1 . (∀ x2 . x2SNoS_ omega(∀ x3 . x3omegaSNoLt (abs_SNo (add_SNo x2 (minus_SNo x0))) (eps_ x3))x2 = x0)SNo x1SNoLt x0 x1x1SNoS_ omegaSNoLt 0 (add_SNo x1 (minus_SNo x0))not (∀ x2 : ο . (∀ x3 . and (x3omega) (SNoLe (add_SNo x0 (eps_ x3)) x1)x2)x2)x1 = x0∀ x2 : ο . x2 (proof)
Param lamSigma : ι(ιι) → ι
Theorem 3aca5..Conj_real_add_SNo__23__14 : ∀ x0 x1 x2 x3 x4 x5 . x0realx1realSNo x0SNo x1SNo (add_SNo x0 x1)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x0))) (eps_ x7))x6 = x0)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x1))) (eps_ x7))x6 = x1)(∀ x6 . x6omegaSNo (ap (lam omega (λ x7 . add_SNo (ap x2 (ordsucc x7)) (ap x4 (ordsucc x7)))) x6))(∀ x6 . x6omegaSNo (ap (lam omega (λ x7 . add_SNo (ap x3 (ordsucc x7)) (ap x5 (ordsucc x7)))) x6))lam omega (λ x6 . add_SNo (ap x2 (ordsucc x6)) (ap x4 (ordsucc x6)))setexp (SNoS_ omega) omegalam omega (λ x6 . add_SNo (ap x3 (ordsucc x6)) (ap x5 (ordsucc x6)))setexp (SNoS_ omega) omega(∀ x6 . x6omegaSNoLt (ap (lam omega (λ x7 . add_SNo (ap x2 (ordsucc x7)) (ap x4 (ordsucc x7)))) x6) (add_SNo x0 x1))(∀ x6 . x6omegaSNoLt (add_SNo x0 x1) (add_SNo (ap (lam omega (λ x7 . add_SNo (ap x2 (ordsucc x7)) (ap x4 (ordsucc x7)))) x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap (lam omega (λ x8 . add_SNo (ap x2 (ordsucc x8)) (ap x4 (ordsucc x8)))) x7) (ap (lam omega (λ x8 . add_SNo (ap x2 (ordsucc x8)) (ap x4 (ordsucc x8)))) x6))(∀ x6 . x6omegaSNoLt (add_SNo x0 x1) (ap (lam omega (λ x7 . add_SNo (ap x3 (ordsucc x7)) (ap x5 (ordsucc x7)))) x6))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap (lam omega (λ x8 . add_SNo (ap x3 (ordsucc x8)) (ap x5 (ordsucc x8)))) x6) (ap (lam omega (λ x8 . add_SNo (ap x3 (ordsucc x8)) (ap x5 (ordsucc x8)))) x7))SNoCutP (prim5 omega (ap (lam omega (λ x6 . add_SNo (ap x2 (ordsucc x6)) (ap x4 (ordsucc x6)))))) (prim5 omega (ap (lam omega (λ x6 . add_SNo (ap x3 (ordsucc x6)) (ap x5 (ordsucc x6))))))add_SNo x0 x1real (proof)
Theorem 56dcc..Conj_real_add_SNo__30__7 : ∀ x0 x1 x2 x3 x4 x5 . x0realx1real(∀ x6 . x6omegaSNoLt (ap x2 x6) x0)(∀ x6 . x6omegaSNoLt x0 (add_SNo (ap x2 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x2 x7) (ap x2 x6))(∀ x6 . x6omegaSNoLt (add_SNo (ap x3 x6) (minus_SNo (eps_ x6))) x0)(∀ x6 . x6omegaSNoLt x0 (ap x3 x6))(∀ x6 . x6omegaSNoLt (ap x4 x6) x1)(∀ x6 . x6omegaSNoLt x1 (add_SNo (ap x4 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x4 x7) (ap x4 x6))(∀ x6 . x6omegaSNoLt (add_SNo (ap x5 x6) (minus_SNo (eps_ x6))) x1)(∀ x6 . x6omegaSNoLt x1 (ap x5 x6))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x5 x6) (ap x5 x7))SNo x0SNo x1SNo (add_SNo x0 x1)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x0))) (eps_ x7))x6 = x0)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x1))) (eps_ x7))x6 = x1)(∀ x6 . x6omegaSNo (ap x2 (ordsucc x6)))(∀ x6 . x6omegaSNo (ap x4 (ordsucc x6)))(∀ x6 . x6omegaap x3 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x3 (ordsucc x6)))(∀ x6 . x6omegaap x5 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x5 (ordsucc x6)))(∀ x6 . x6omegaap (lam omega (λ x8 . add_SNo (ap x2 (ordsucc x8)) (ap x4 (ordsucc x8)))) x6 = add_SNo (ap x2 (ordsucc x6)) (ap x4 (ordsucc x6)))(∀ x6 . x6omegaap (lam omega (λ x8 . add_SNo (ap x3 (ordsucc x8)) (ap x5 (ordsucc x8)))) x6 = add_SNo (ap x3 (ordsucc x6)) (ap x5 (ordsucc x6)))(∀ x6 . x6omegaSNo (ap (lam omega (λ x7 . add_SNo (ap x2 (ordsucc x7)) (ap x4 (ordsucc x7)))) x6))(∀ x6 . x6omegaSNo (ap (lam omega (λ x7 . add_SNo (ap x3 (ordsucc x7)) (ap x5 (ordsucc x7)))) x6))lam omega (λ x6 . add_SNo (ap x2 (ordsucc x6)) (ap x4 (ordsucc x6)))setexp (SNoS_ omega) omegalam omega (λ x6 . add_SNo (ap x3 (ordsucc x6)) (ap x5 (ordsucc x6)))setexp (SNoS_ omega) omegaadd_SNo x0 x1real (proof)
Theorem 0e33e..Conj_real_add_SNo__33__2 : ∀ x0 x1 x2 x3 x4 x5 . x0realx1real(∀ x6 . x6omegaSNoLt x0 (add_SNo (ap x2 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x2 x7) (ap x2 x6))(∀ x6 . x6omegaSNoLt (add_SNo (ap x3 x6) (minus_SNo (eps_ x6))) x0)(∀ x6 . x6omegaSNoLt x0 (ap x3 x6))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x3 x6) (ap x3 x7))(∀ x6 . x6omegaSNoLt (ap x4 x6) x1)(∀ x6 . x6omegaSNoLt x1 (add_SNo (ap x4 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x4 x7) (ap x4 x6))(∀ x6 . x6omegaSNoLt (add_SNo (ap x5 x6) (minus_SNo (eps_ x6))) x1)(∀ x6 . x6omegaSNoLt x1 (ap x5 x6))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x5 x6) (ap x5 x7))SNo x0SNo x1SNo (add_SNo x0 x1)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x0))) (eps_ x7))x6 = x0)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x1))) (eps_ x7))x6 = x1)(∀ x6 . x6omegaap x2 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x2 (ordsucc x6)))(∀ x6 . x6omegaap x4 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x4 (ordsucc x6)))(∀ x6 . x6omegaap x3 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x3 (ordsucc x6)))(∀ x6 . x6omegaap x5 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x5 (ordsucc x6)))(∀ x6 . x6omegaap (lam omega (λ x8 . add_SNo (ap x2 (ordsucc x8)) (ap x4 (ordsucc x8)))) x6 = add_SNo (ap x2 (ordsucc x6)) (ap x4 (ordsucc x6)))(∀ x6 . x6omegaap (lam omega (λ x8 . add_SNo (ap x3 (ordsucc x8)) (ap x5 (ordsucc x8)))) x6 = add_SNo (ap x3 (ordsucc x6)) (ap x5 (ordsucc x6)))(∀ x6 . x6omegaSNo (ap (lam omega (λ x7 . add_SNo (ap x2 (ordsucc x7)) (ap x4 (ordsucc x7)))) x6))add_SNo x0 x1real (proof)
Theorem c87d9..Conj_real_add_SNo__35__13 : ∀ x0 x1 x2 x3 x4 x5 . x0realx1real(∀ x6 . x6omegaSNoLt (ap x2 x6) x0)(∀ x6 . x6omegaSNoLt x0 (add_SNo (ap x2 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x2 x7) (ap x2 x6))(∀ x6 . x6omegaSNoLt (add_SNo (ap x3 x6) (minus_SNo (eps_ x6))) x0)(∀ x6 . x6omegaSNoLt x0 (ap x3 x6))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x3 x6) (ap x3 x7))(∀ x6 . x6omegaSNoLt (ap x4 x6) x1)(∀ x6 . x6omegaSNoLt x1 (add_SNo (ap x4 x6) (eps_ x6)))(∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x4 x7) (ap x4 x6))(∀ x6 . x6omegaSNoLt (add_SNo (ap x5 x6) (minus_SNo (eps_ x6))) x1)(∀ x6 . x6omegaSNoLt x1 (ap x5 x6))SNo x0SNo x1SNo (add_SNo x0 x1)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x0))) (eps_ x7))x6 = x0)(∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x1))) (eps_ x7))x6 = x1)(∀ x6 . x6omegaap x2 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x2 (ordsucc x6)))(∀ x6 . x6omegaap x4 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x4 (ordsucc x6)))(∀ x6 . x6omegaap x3 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x3 (ordsucc x6)))(∀ x6 . x6omegaap x5 (ordsucc x6)SNoS_ omega)(∀ x6 . x6omegaSNo (ap x5 (ordsucc x6)))(∀ x6 . x6omegaap (lam omega (λ x8 . add_SNo (ap x2 (ordsucc x8)) (ap x4 (ordsucc x8)))) x6 = add_SNo (ap x2 (ordsucc x6)) (ap x4 (ordsucc x6)))add_SNo x0 x1real (proof)

previous assets