Search for blocks/addresses/...
Proofgold Proposition
∀ x0 x1 .
x1
∈
{x2 ∈
setexp
x0
x0
|
bij
x0
x0
(
ap
x2
)
}
⟶
explicit_Group_inverse
{x3 ∈
setexp
x0
x0
|
bij
x0
x0
(
ap
x3
)
}
(
λ x3 x4 .
lam
x0
(
λ x5 .
ap
x4
(
ap
x3
x5
)
)
)
x1
=
lam
x0
(
inv
x0
(
ap
x1
)
)
type
prop
theory
HotG
name
explicit_Group_symgroup_inv_eq
proof
PUMaE..
Megalodon
explicit_Group_symgroup_inv_eq
proofgold address
TMKp3..
explicit_Group_symgroup_inv_eq
creator
4924
Pr6Pc..
/
cd167..
owner
4924
Pr6Pc..
/
cd167..
term root
569ca..