Search for blocks/addresses/...
Proofgold Proposition
∀ x0 x1 x2 x3 x4 x5 .
x0
∈
real
⟶
x1
∈
real
⟶
x3
∈
setexp
(
SNoS_
omega
)
omega
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
(
ap
x2
x6
)
x0
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
x0
(
add_SNo
(
ap
x2
x6
)
(
eps_
x6
)
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
∀ x7 .
x7
∈
x6
⟶
SNoLt
(
ap
x2
x7
)
(
ap
x2
x6
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
(
add_SNo
(
ap
x3
x6
)
(
minus_SNo
(
eps_
x6
)
)
)
x0
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
x0
(
ap
x3
x6
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
∀ x7 .
x7
∈
x6
⟶
SNoLt
(
ap
x3
x6
)
(
ap
x3
x7
)
)
⟶
x5
∈
setexp
(
SNoS_
omega
)
omega
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
(
ap
x4
x6
)
x1
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
x1
(
add_SNo
(
ap
x4
x6
)
(
eps_
x6
)
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
∀ x7 .
x7
∈
x6
⟶
SNoLt
(
ap
x4
x7
)
(
ap
x4
x6
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
(
add_SNo
(
ap
x5
x6
)
(
minus_SNo
(
eps_
x6
)
)
)
x1
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
x1
(
ap
x5
x6
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
∀ x7 .
x7
∈
x6
⟶
SNoLt
(
ap
x5
x6
)
(
ap
x5
x7
)
)
⟶
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
⟶
(
∀ x6 .
x6
∈
SNoS_
omega
⟶
(
∀ x7 .
x7
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x6
(
minus_SNo
x0
)
)
)
(
eps_
x7
)
)
⟶
x6
=
x0
)
⟶
(
∀ x6 .
x6
∈
SNoS_
omega
⟶
(
∀ x7 .
x7
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x6
(
minus_SNo
x1
)
)
)
(
eps_
x7
)
)
⟶
x6
=
x1
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
ap
x2
(
ordsucc
x6
)
∈
SNoS_
omega
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNo
(
ap
x2
(
ordsucc
x6
)
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
ap
x4
(
ordsucc
x6
)
∈
SNoS_
omega
)
⟶
add_SNo
x0
x1
∈
real
type
prop
theory
HotG
name
-
proof
PURzn..
Megalodon
Conj_real_add_SNo__41__9
proofgold address
TMNyv..
Conj_real_add_SNo__41__9
creator
35045
PrNpY..
/
3da60..
owner
35047
PrNpY..
/
ab1d0..
term root
d9772..