Search for blocks/addresses/...

Proofgold Proposition

∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5∀ x6 : ο . ({x7 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x7 = x1∀ x8 : ο . x8}x0explicit_Nats {x7 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x7 = x1∀ x8 : ο . x8} x2 (λ x7 . x3 x7 x2)x2{x7 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x7 = x1∀ x8 : ο . x8}(∀ x7 . x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9}x3 x7 x2 = x2∀ x8 : ο . x8)(∀ x7 . x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9}∀ x8 : ι → ο . x8 x2(∀ x9 . x9{x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x10 = x1∀ x11 : ο . x11}x8 (x3 x9 x2))x8 x7)(∀ x7 . x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9}∀ x8 . x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10}explicit_Nats_one_plus {x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x10 = x1∀ x11 : ο . x11} x2 (λ x10 . x3 x10 x2) x7 x8 = x3 x7 x8)(∀ x7 . x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9}∀ x8 . x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10}explicit_Nats_one_mult {x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x10 = x1∀ x11 : ο . x11} x2 (λ x10 . x3 x10 x2) x7 x8 = x4 x7 x8)(∀ x7 . x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9}∀ x8 . x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10}x3 x7 x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10})(∀ x7 . x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9}∀ x8 . x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10}x4 x7 x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10})x6)x6
type
prop
theory
HotG
name
explicit_OrderedField_Npos_props
proof
PUa4W..
Megalodon
explicit_OrderedField_Npos_props
proofgold address
TMFBy..explicit_OrderedField_Npos_props
creator
5731 Pr6Pc../4eed9..
owner
5731 Pr6Pc../4eed9..
term root
70d4a..