Search for blocks/addresses/...
Proofgold Address
address
PUa4WXcxspLSe9swy7dbMAJaZMUQ1PPebvL
total
0
mg
-
conjpub
-
current assets
50d4b..
/
ab11c..
bday:
5731
doc published by
Pr6Pc..
Param
explicit_Nats
explicit_Nats
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Param
explicit_Nats_primrec
explicit_Nats_primrec
:
ι
→
ι
→
(
ι
→
ι
) →
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Known
explicit_Nats_E
explicit_Nats_E
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 : ο .
(
explicit_Nats
x0
x1
x2
⟶
x1
∈
x0
⟶
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
∈
x0
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
=
x1
⟶
∀ x5 : ο .
x5
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x2
x4
=
x2
x5
⟶
x4
=
x5
)
⟶
(
∀ x4 :
ι → ο
.
x4
x1
⟶
(
∀ x5 .
x4
x5
⟶
x4
(
x2
x5
)
)
⟶
∀ x5 .
x5
∈
x0
⟶
x4
x5
)
⟶
x3
)
⟶
explicit_Nats
x0
x1
x2
⟶
x3
Known
explicit_Nats_ind
explicit_Nats_ind
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 :
ι → ο
.
x3
x1
⟶
(
∀ x4 .
x4
∈
x0
⟶
x3
x4
⟶
x3
(
x2
x4
)
)
⟶
∀ x4 .
x4
∈
x0
⟶
x3
x4
Known
explicit_Nats_primrec_base
explicit_Nats_primrec_base
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 .
∀ x4 :
ι →
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
explicit_Nats_primrec
x0
x1
x2
x3
x4
x1
=
x3
Known
explicit_Nats_primrec_S
explicit_Nats_primrec_S
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 .
∀ x4 :
ι →
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Nats_primrec
x0
x1
x2
x3
x4
(
x2
x5
)
=
x4
x5
(
explicit_Nats_primrec
x0
x1
x2
x3
x4
x5
)
Theorem
explicit_Nats_primrec_P
explicit_Nats_primrec_P
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 :
ι → ο
.
∀ x4 .
x3
x4
⟶
∀ x5 :
ι →
ι → ι
.
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x3
x7
⟶
x3
(
x5
x6
x7
)
)
⟶
∀ x6 .
x6
∈
x0
⟶
x3
(
explicit_Nats_primrec
x0
x1
x2
x4
x5
x6
)
(proof)
Definition
explicit_Nats_zero_plus
explicit_Nats_zero_plus
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 .
explicit_Nats_primrec
x0
x1
x2
x4
(
λ x5 .
x2
)
x3
Definition
explicit_Nats_zero_mult
explicit_Nats_zero_mult
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 .
explicit_Nats_primrec
x0
x1
x2
x1
(
λ x5 .
explicit_Nats_zero_plus
x0
x1
x2
x4
)
x3
Theorem
explicit_Nats_zero_plus_N
explicit_Nats_zero_plus_N
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
explicit_Nats_zero_plus
x0
x1
x2
x3
x4
∈
x0
(proof)
Theorem
explicit_Nats_zero_mult_N
explicit_Nats_zero_mult_N
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
explicit_Nats_zero_mult
x0
x1
x2
x3
x4
∈
x0
(proof)
Known
explicit_Nats_zero_plus_0L
explicit_Nats_zero_plus_0L
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
explicit_Nats_zero_plus
x0
x1
x2
x1
x3
=
x3
Known
explicit_Nats_zero_plus_SL
explicit_Nats_zero_plus_SL
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
explicit_Nats_zero_plus
x0
x1
x2
(
x2
x3
)
x4
=
x2
(
explicit_Nats_zero_plus
x0
x1
x2
x3
x4
)
Known
explicit_Nats_zero_mult_0L
explicit_Nats_zero_mult_0L
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
explicit_Nats_zero_mult
x0
x1
x2
x1
x3
=
x1
Known
explicit_Nats_zero_mult_SL
explicit_Nats_zero_mult_SL
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
explicit_Nats_zero_mult
x0
x1
x2
(
x2
x3
)
x4
=
explicit_Nats_zero_plus
x0
x1
x2
x4
(
explicit_Nats_zero_mult
x0
x1
x2
x3
x4
)
Definition
explicit_Nats_one_plus
explicit_Nats_one_plus
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 .
explicit_Nats_primrec
x0
x1
x2
(
x2
x4
)
(
λ x5 .
x2
)
x3
Theorem
explicit_Nats_one_plus_N
explicit_Nats_one_plus_N
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
explicit_Nats_one_plus
x0
x1
x2
x3
x4
∈
x0
(proof)
Definition
explicit_Nats_one_mult
explicit_Nats_one_mult
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 .
explicit_Nats_primrec
x0
x1
x2
x4
(
λ x5 .
explicit_Nats_one_plus
x0
x1
x2
x4
)
x3
Theorem
explicit_Nats_one_mult_N
explicit_Nats_one_mult_N
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
explicit_Nats_one_mult
x0
x1
x2
x3
x4
∈
x0
(proof)
Definition
explicit_Nats_one_exp
explicit_Nats_one_exp
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 .
explicit_Nats_primrec
x0
x1
x2
x3
(
λ x4 .
explicit_Nats_one_mult
x0
x1
x2
x3
)
Theorem
explicit_Nats_one_exp_N
explicit_Nats_one_exp_N
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
explicit_Nats_one_exp
x0
x1
x2
x3
x4
∈
x0
(proof)
Known
explicit_Nats_one_plus_1L
explicit_Nats_one_plus_1L
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
explicit_Nats_one_plus
x0
x1
x2
x1
x3
=
x2
x3
Known
explicit_Nats_one_plus_SL
explicit_Nats_one_plus_SL
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
explicit_Nats_one_plus
x0
x1
x2
(
x2
x3
)
x4
=
x2
(
explicit_Nats_one_plus
x0
x1
x2
x3
x4
)
Known
explicit_Nats_one_mult_1L
explicit_Nats_one_mult_1L
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
explicit_Nats_one_mult
x0
x1
x2
x1
x3
=
x3
Known
explicit_Nats_one_mult_SL
explicit_Nats_one_mult_SL
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
explicit_Nats_one_mult
x0
x1
x2
(
x2
x3
)
x4
=
explicit_Nats_one_plus
x0
x1
x2
x4
(
explicit_Nats_one_mult
x0
x1
x2
x3
x4
)
Known
explicit_Nats_one_exp_1L
explicit_Nats_one_exp_1L
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
explicit_Nats_one_exp
x0
x1
x2
x3
x1
=
x3
Known
explicit_Nats_one_exp_SL
explicit_Nats_one_exp_SL
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
explicit_Nats_one_exp
x0
x1
x2
x3
(
x2
x4
)
=
explicit_Nats_one_mult
x0
x1
x2
x3
(
explicit_Nats_one_exp
x0
x1
x2
x3
x4
)
Theorem
AssocComm_identities
AssocComm_identities
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 : ο .
(
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x1
x3
(
x1
x4
x5
)
=
x1
x4
(
x1
x3
x5
)
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x1
x3
(
x1
x4
x5
)
=
x1
x5
(
x1
x3
x4
)
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x1
(
x1
x3
x4
)
(
x1
x5
x6
)
=
x1
(
x1
x3
x5
)
(
x1
x4
x6
)
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x1
x3
(
x1
x4
(
x1
x5
x6
)
)
=
x1
x6
(
x1
x3
(
x1
x4
x5
)
)
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x1
x3
(
x1
x4
(
x1
x5
x6
)
)
=
x1
x5
(
x1
x6
(
x1
x3
x4
)
)
)
⟶
x2
)
⟶
x2
(proof)
Param
explicit_Field
explicit_Field
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
explicit_Field_E
explicit_Field_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 : ο .
(
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
∈
x0
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x3
x6
(
x3
x7
x8
)
=
x3
(
x3
x6
x7
)
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
=
x3
x7
x6
)
⟶
x1
∈
x0
⟶
(
∀ x6 .
x6
∈
x0
⟶
x3
x1
x6
=
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x0
)
(
x3
x6
x8
=
x1
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
∈
x0
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x6
(
x4
x7
x8
)
=
x4
(
x4
x6
x7
)
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
x2
∈
x0
⟶
(
x2
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
x4
x2
x6
=
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
(
x6
=
x1
⟶
∀ x7 : ο .
x7
)
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x0
)
(
x4
x6
x8
=
x2
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x6
(
x3
x7
x8
)
=
x3
(
x4
x6
x7
)
(
x4
x6
x8
)
)
⟶
x5
)
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
x5
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
explicit_Field_zero_multL
explicit_Field_zero_multL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x4
x1
x5
=
x1
Theorem
explicit_Field_mult_zero_inv
explicit_Field_mult_zero_inv
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
x6
=
x1
⟶
or
(
x5
=
x1
)
(
x6
=
x1
)
(proof)
Param
explicit_OrderedField
explicit_OrderedField
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ο
Definition
iff
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Known
explicit_OrderedField_E
explicit_OrderedField_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 : ο .
(
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x5
x7
x8
⟶
x5
x8
x9
⟶
x5
x7
x9
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
iff
(
and
(
x5
x7
x8
)
(
x5
x8
x7
)
)
(
x7
=
x8
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
or
(
x5
x7
x8
)
(
x5
x8
x7
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x5
x7
x8
⟶
x5
(
x3
x7
x9
)
(
x3
x8
x9
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x5
x1
x7
⟶
x5
x1
x8
⟶
x5
x1
(
x4
x7
x8
)
)
⟶
x6
)
⟶
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
x6
Theorem
explicit_OrderedField_leq_refl
explicit_OrderedField_leq_refl
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
x6
∈
x0
⟶
x5
x6
x6
(proof)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
explicit_OrderedField_leq_antisym
explicit_OrderedField_leq_antisym
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x5
x6
x7
⟶
x5
x7
x6
⟶
x6
=
x7
(proof)
Theorem
explicit_OrderedField_leq_tra
explicit_OrderedField_leq_tra
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x5
x6
x7
⟶
x5
x7
x8
⟶
x5
x6
x8
(proof)
Known
explicit_OrderedField_square_nonneg
explicit_OrderedField_square_nonneg
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
x6
∈
x0
⟶
x5
x1
(
x4
x6
x6
)
Theorem
explicit_OrderedField_leq_zero_one
explicit_OrderedField_leq_zero_one
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
x5
x1
x2
(proof)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
natOfOrderedField_p
natOfOrderedField_p
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 :
ι →
ι → ο
.
λ x6 .
∀ x7 :
ι → ο
.
x7
x1
⟶
(
∀ x8 .
x7
x8
⟶
x7
(
x3
x8
x2
)
)
⟶
x7
x6
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
explicit_Nats_I
explicit_Nats_I
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
x1
∈
x0
⟶
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x0
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
=
x1
⟶
∀ x4 : ο .
x4
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
(
∀ x3 :
ι → ο
.
x3
x1
⟶
(
∀ x4 .
x3
x4
⟶
x3
(
x2
x4
)
)
⟶
∀ x4 .
x4
∈
x0
⟶
x3
x4
)
⟶
explicit_Nats
x0
x1
x2
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
explicit_Field_plus_cancelR
explicit_Field_plus_cancelR
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
x7
=
x3
x6
x7
⟶
x5
=
x6
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
explicit_Nats_natOfOrderedField
explicit_Nats_natOfOrderedField
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
explicit_Nats
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
x1
(
λ x6 .
x3
x6
x2
)
Known
Sep_Subq
Sep_Subq
:
∀ x0 .
∀ x1 :
ι → ο
.
Sep
x0
x1
⊆
x0
Theorem
explicit_PosNats_natOfOrderedField
explicit_PosNats_natOfOrderedField
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
explicit_Nats
{x6 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x6
=
x1
⟶
∀ x7 : ο .
x7
}
x2
(
λ x6 .
x3
x6
x2
)
(proof)
Param
explicit_Field_minus
explicit_Field_minus
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
explicit_OrderedField_rationalp
explicit_OrderedField_rationalp
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 :
ι →
ι → ο
.
λ x6 .
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
{x9 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
(
x9
=
x1
)
)
(
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
}
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
x10
∈
{x11 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x11
=
x1
⟶
∀ x12 : ο .
x12
}
)
(
x4
x10
x6
=
x8
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
Known
explicit_Field_dist_R
explicit_Field_dist_R
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
(
x3
x5
x6
)
x7
=
x3
(
x4
x5
x7
)
(
x4
x6
x7
)
Theorem
explicit_OrderedField_Npos_props
explicit_OrderedField_Npos_props
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 : ο .
(
{x7 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x7
=
x1
⟶
∀ x8 : ο .
x8
}
⊆
x0
⟶
explicit_Nats
{x7 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x7
=
x1
⟶
∀ x8 : ο .
x8
}
x2
(
λ x7 .
x3
x7
x2
)
⟶
x2
∈
{x7 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x7
=
x1
⟶
∀ x8 : ο .
x8
}
⟶
(
∀ x7 .
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
⟶
x3
x7
x2
=
x2
⟶
∀ x8 : ο .
x8
)
⟶
(
∀ x7 .
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
⟶
∀ x8 :
ι → ο
.
x8
x2
⟶
(
∀ x9 .
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
⟶
x8
(
x3
x9
x2
)
)
⟶
x8
x7
)
⟶
(
∀ x7 .
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
⟶
∀ x8 .
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
⟶
explicit_Nats_one_plus
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
x2
(
λ x10 .
x3
x10
x2
)
x7
x8
=
x3
x7
x8
)
⟶
(
∀ x7 .
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
⟶
∀ x8 .
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
⟶
explicit_Nats_one_mult
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
x2
(
λ x10 .
x3
x10
x2
)
x7
x8
=
x4
x7
x8
)
⟶
(
∀ x7 .
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
⟶
∀ x8 .
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
⟶
x3
x7
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
⟶
(
∀ x7 .
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
⟶
∀ x8 .
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
⟶
x4
x7
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
⟶
x6
)
⟶
x6
(proof)
Known
explicit_Field_minus_invol
explicit_Field_minus_invol
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x5
Known
explicit_Field_minus_mult_R
explicit_Field_minus_mult_R
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
(
explicit_Field_minus
x0
x1
x2
x3
x4
x6
)
=
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x5
x6
)
Known
explicit_Field_zero_multR
explicit_Field_zero_multR
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x4
x5
x1
=
x1
Known
explicit_Field_minus_plus_dist
explicit_Field_minus_plus_dist
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
(
x3
x5
x6
)
=
x3
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
x6
)
Known
explicit_Field_minus_clos
explicit_Field_minus_clos
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x5
∈
x0
Known
explicit_Field_minus_L
explicit_Field_minus_L
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x3
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
x5
=
x1
Known
explicit_Field_minus_zero
explicit_Field_minus_zero
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x1
=
x1
Known
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Theorem
explicit_OrderedField_Z_props
explicit_OrderedField_Z_props
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 : ο .
(
(
∀ x7 .
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x7
∈
{x8 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
(
x8
=
x1
)
)
(
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
}
)
⟶
x1
∈
{x7 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
)
(
x7
=
x1
)
)
(
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
)
}
⟶
{x7 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x7
=
x1
⟶
∀ x8 : ο .
x8
}
⊆
{x7 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
)
(
x7
=
x1
)
)
(
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
)
}
⟶
{x7 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
)
(
x7
=
x1
)
)
(
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
)
}
⊆
x0
⟶
(
∀ x7 .
x7
∈
{x8 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
(
x8
=
x1
)
)
(
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
}
⟶
∀ x8 : ο .
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
⟶
x8
)
⟶
(
x7
=
x1
⟶
x8
)
⟶
(
x7
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
⟶
x8
)
⟶
x8
)
⟶
x2
∈
{x7 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
)
(
x7
=
x1
)
)
(
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
)
}
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x2
∈
{x7 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
)
(
x7
=
x1
)
)
(
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
)
}
⟶
(
∀ x7 .
x7
∈
{x8 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
(
x8
=
x1
)
)
(
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
}
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x7
∈
{x8 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
(
x8
=
x1
)
)
(
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
}
)
⟶
(
∀ x7 .
x7
∈
{x8 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
(
x8
=
x1
)
)
(
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
}
⟶
∀ x8 .
x8
∈
{x9 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
(
x9
=
x1
)
)
(
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
}
⟶
x3
x7
x8
∈
{x9 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
(
x9
=
x1
)
)
(
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
}
)
⟶
(
∀ x7 .
x7
∈
{x8 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
(
x8
=
x1
)
)
(
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
}
⟶
∀ x8 .
x8
∈
{x9 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
(
x9
=
x1
)
)
(
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
}
⟶
x4
x7
x8
∈
{x9 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
(
x9
=
x1
)
)
(
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
}
)
⟶
x6
)
⟶
x6
(proof)
Theorem
explicit_OrderedField_Q_props
explicit_OrderedField_Q_props
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 : ο .
(
Sep
x0
(
explicit_OrderedField_rationalp
x0
x1
x2
x3
x4
x5
)
⊆
x0
⟶
(
∀ x7 .
x7
∈
Sep
x0
(
explicit_OrderedField_rationalp
x0
x1
x2
x3
x4
x5
)
⟶
∀ x8 : ο .
(
x7
∈
x0
⟶
∀ x9 .
x9
∈
{x10 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x10
∈
{x11 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x11
=
x1
⟶
∀ x12 : ο .
x12
}
)
(
x10
=
x1
)
)
(
x10
∈
{x11 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x11
=
x1
⟶
∀ x12 : ο .
x12
}
)
}
⟶
∀ x10 .
x10
∈
{x11 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x11
=
x1
⟶
∀ x12 : ο .
x12
}
⟶
x4
x10
x7
=
x9
⟶
x8
)
⟶
x8
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
{x9 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
(
x9
=
x1
)
)
(
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
}
⟶
∀ x9 .
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
⟶
x4
x9
x7
=
x8
⟶
x7
∈
Sep
x0
(
explicit_OrderedField_rationalp
x0
x1
x2
x3
x4
x5
)
)
⟶
x6
)
⟶
x6
(proof)
Known
explicit_Field_I
explicit_Field_I
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
∈
x0
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
(
x3
x6
x7
)
=
x3
(
x3
x5
x6
)
x7
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
=
x3
x6
x5
)
⟶
x1
∈
x0
⟶
(
∀ x5 .
x5
∈
x0
⟶
x3
x1
x5
=
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
x0
)
(
x3
x5
x7
=
x1
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
x6
∈
x0
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x5
(
x4
x6
x7
)
=
x4
(
x4
x5
x6
)
x7
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
x6
=
x4
x6
x5
)
⟶
x2
∈
x0
⟶
(
x2
=
x1
⟶
∀ x5 : ο .
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
x4
x2
x5
=
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
(
x5
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
x0
)
(
x4
x5
x7
=
x2
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x5
(
x3
x6
x7
)
=
x3
(
x4
x5
x6
)
(
x4
x5
x7
)
)
⟶
explicit_Field
x0
x1
x2
x3
x4
Known
explicit_Field_minus_R
explicit_Field_minus_R
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x3
x5
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x1
Known
explicit_Field_minus_mult_L
explicit_Field_minus_mult_L
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
x6
=
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x5
x6
)
Theorem
explicit_OrderedField_explicit_Field_Q
explicit_OrderedField_explicit_Field_Q
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
explicit_Field
(
Sep
x0
(
explicit_OrderedField_rationalp
x0
x1
x2
x3
x4
x5
)
)
x1
x2
x3
x4
(proof)
Param
explicit_Reals
explicit_Reals
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ο
Param
omega
omega
:
ι
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
lt
lt
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 :
ι →
ι → ο
.
λ x6 x7 .
and
(
x5
x6
x7
)
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Param
ap
ap
:
ι
→
ι
→
ι
Known
explicit_Reals_E
explicit_Reals_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 : ο .
(
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
lt
x0
x1
x2
x3
x4
x5
x1
x7
⟶
x5
x1
x8
⟶
∀ x9 : ο .
(
∀ x10 .
and
(
x10
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
(
x5
x8
(
x4
x10
x7
)
)
⟶
x9
)
⟶
x9
)
⟶
(
∀ x7 .
x7
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
∀ x8 .
x8
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
(
∀ x9 .
x9
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
and
(
x5
(
ap
x7
x9
)
(
ap
x8
x9
)
)
(
x5
(
ap
x7
x9
)
(
ap
x7
(
x3
x9
x2
)
)
)
)
(
x5
(
ap
x8
(
x3
x9
x2
)
)
(
ap
x8
x9
)
)
)
⟶
∀ x9 : ο .
(
∀ x10 .
and
(
x10
∈
x0
)
(
∀ x11 .
x11
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
x5
(
ap
x7
x11
)
x10
)
(
x5
x10
(
ap
x8
x11
)
)
)
⟶
x9
)
⟶
x9
)
⟶
x6
)
⟶
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
x6
Param
nat_p
nat_p
:
ι
→
ο
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Param
ordsucc
ordsucc
:
ι
→
ι
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
nat_primrec_0
nat_primrec_0
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
nat_primrec
x0
x1
0
=
x0
Known
nat_primrec_S
nat_primrec_S
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
Theorem
explicit_Reals_characteristic_0
explicit_Reals_characteristic_0
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
x6
∈
omega
⟶
nat_primrec
x2
(
λ x8 .
x3
x2
)
x6
=
x1
⟶
∀ x7 : ο .
x7
(proof)
Known
explicit_OrderedField_I
explicit_OrderedField_I
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x5
x6
x7
⟶
x5
x7
x8
⟶
x5
x6
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
iff
(
and
(
x5
x6
x7
)
(
x5
x7
x6
)
)
(
x6
=
x7
)
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
or
(
x5
x6
x7
)
(
x5
x7
x6
)
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x5
x6
x7
⟶
x5
(
x3
x6
x8
)
(
x3
x7
x8
)
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x5
x1
x6
⟶
x5
x1
x7
⟶
x5
x1
(
x4
x6
x7
)
)
⟶
explicit_OrderedField
x0
x1
x2
x3
x4
x5
Theorem
explicit_Reals_sub
explicit_Reals_sub
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
x6
⊆
x0
⟶
x1
∈
x6
⟶
x2
∈
x6
⟶
(
∀ x7 .
x7
∈
x6
⟶
∀ x8 .
x8
∈
x6
⟶
x3
x7
x8
∈
x6
)
⟶
(
∀ x7 .
x7
∈
x6
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x7
∈
x6
)
⟶
(
∀ x7 .
x7
∈
x6
⟶
∀ x8 .
x8
∈
x6
⟶
x4
x7
x8
∈
x6
)
⟶
(
∀ x7 .
x7
∈
x6
⟶
(
x7
=
x1
⟶
∀ x8 : ο .
x8
)
⟶
∀ x8 : ο .
(
∀ x9 .
and
(
x9
∈
x6
)
(
x4
x7
x9
=
x2
)
⟶
x8
)
⟶
x8
)
⟶
explicit_OrderedField
x6
x1
x2
x3
x4
x5
(proof)
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
explicit_Field_plus_cancelL
explicit_Field_plus_cancelL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
x6
=
x3
x5
x7
⟶
x6
=
x7
Theorem
explicit_Reals_Q_min_props
explicit_Reals_Q_min_props
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 .
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
x6
⊆
x0
⟶
explicit_Field
x6
x1
x2
x3
x4
⟶
∀ x7 : ο .
(
(
∀ x8 .
x8
∈
x6
⟶
explicit_Field_minus
x6
x1
x2
x3
x4
x8
=
explicit_Field_minus
x0
x1
x2
x3
x4
x8
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x8
∈
x6
)
⟶
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
=
Sep
x6
(
natOfOrderedField_p
x6
x1
x2
x3
x4
x5
)
⟶
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
=
{x9 ∈
Sep
x6
(
natOfOrderedField_p
x6
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
⟶
{x9 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
(
x9
=
x1
)
)
(
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
}
=
{x9 ∈
x6
|
or
(
or
(
explicit_Field_minus
x6
x1
x2
x3
x4
x9
∈
{x10 ∈
Sep
x6
(
natOfOrderedField_p
x6
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
(
x9
=
x1
)
)
(
x9
∈
{x10 ∈
Sep
x6
(
natOfOrderedField_p
x6
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
}
⟶
Sep
x0
(
explicit_OrderedField_rationalp
x0
x1
x2
x3
x4
x5
)
=
Sep
x6
(
explicit_OrderedField_rationalp
x6
x1
x2
x3
x4
x5
)
⟶
x7
)
⟶
x7
(proof)
Theorem
explicit_Reals_Q_min
explicit_Reals_Q_min
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
x6
⊆
x0
⟶
explicit_Field
x6
x1
x2
x3
x4
⟶
Sep
x0
(
explicit_OrderedField_rationalp
x0
x1
x2
x3
x4
x5
)
⊆
x6
(proof)
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Param
encode_b
encode_b
:
ι
→
CT2
ι
Param
encode_r
encode_r
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Definition
pack_b_b_r_e_e
pack_b_b_r_e_e
:=
λ x0 .
λ x1 x2 :
ι →
ι → ι
.
λ x3 :
ι →
ι → ο
.
λ x4 x5 .
lam
6
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
(
encode_b
x0
x1
)
(
If_i
(
x6
=
2
)
(
encode_b
x0
x2
)
(
If_i
(
x6
=
3
)
(
encode_r
x0
x3
)
(
If_i
(
x6
=
4
)
x4
x5
)
)
)
)
)
Known
tuple_6_0_eq
tuple_6_0_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
0
=
x0
Theorem
pack_b_b_r_e_e_0_eq
pack_b_b_r_e_e_0_eq
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 x6 .
x0
=
pack_b_b_r_e_e
x1
x2
x3
x4
x5
x6
⟶
x1
=
ap
x0
0
(proof)
Theorem
pack_b_b_r_e_e_0_eq2
pack_b_b_r_e_e_0_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
x0
=
ap
(
pack_b_b_r_e_e
x0
x1
x2
x3
x4
x5
)
0
(proof)
Param
decode_b
decode_b
:
ι
→
ι
→
ι
→
ι
Known
tuple_6_1_eq
tuple_6_1_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
1
=
x1
Known
decode_encode_b
decode_encode_b
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
decode_b
(
encode_b
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
pack_b_b_r_e_e_1_eq
pack_b_b_r_e_e_1_eq
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 x6 .
x0
=
pack_b_b_r_e_e
x1
x2
x3
x4
x5
x6
⟶
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
x2
x7
x8
=
decode_b
(
ap
x0
1
)
x7
x8
(proof)
Theorem
pack_b_b_r_e_e_1_eq2
pack_b_b_r_e_e_1_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x1
x6
x7
=
decode_b
(
ap
(
pack_b_b_r_e_e
x0
x1
x2
x3
x4
x5
)
1
)
x6
x7
(proof)
Known
tuple_6_2_eq
tuple_6_2_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
2
=
x2
Theorem
pack_b_b_r_e_e_2_eq
pack_b_b_r_e_e_2_eq
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 x6 .
x0
=
pack_b_b_r_e_e
x1
x2
x3
x4
x5
x6
⟶
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
x3
x7
x8
=
decode_b
(
ap
x0
2
)
x7
x8
(proof)
Theorem
pack_b_b_r_e_e_2_eq2
pack_b_b_r_e_e_2_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x2
x6
x7
=
decode_b
(
ap
(
pack_b_b_r_e_e
x0
x1
x2
x3
x4
x5
)
2
)
x6
x7
(proof)
Param
decode_r
decode_r
:
ι
→
ι
→
ι
→
ο
Known
tuple_6_3_eq
tuple_6_3_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
3
=
x3
Known
decode_encode_r
decode_encode_r
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
decode_r
(
encode_r
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
pack_b_b_r_e_e_3_eq
pack_b_b_r_e_e_3_eq
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 x6 .
x0
=
pack_b_b_r_e_e
x1
x2
x3
x4
x5
x6
⟶
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
x4
x7
x8
=
decode_r
(
ap
x0
3
)
x7
x8
(proof)
Theorem
pack_b_b_r_e_e_3_eq2
pack_b_b_r_e_e_3_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
=
decode_r
(
ap
(
pack_b_b_r_e_e
x0
x1
x2
x3
x4
x5
)
3
)
x6
x7
(proof)
Known
tuple_6_4_eq
tuple_6_4_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
4
=
x4
Theorem
pack_b_b_r_e_e_4_eq
pack_b_b_r_e_e_4_eq
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 x6 .
x0
=
pack_b_b_r_e_e
x1
x2
x3
x4
x5
x6
⟶
x5
=
ap
x0
4
(proof)
Theorem
pack_b_b_r_e_e_4_eq2
pack_b_b_r_e_e_4_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
x4
=
ap
(
pack_b_b_r_e_e
x0
x1
x2
x3
x4
x5
)
4
(proof)
Known
tuple_6_5_eq
tuple_6_5_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
5
=
x5
Theorem
pack_b_b_r_e_e_5_eq
pack_b_b_r_e_e_5_eq
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 x6 .
x0
=
pack_b_b_r_e_e
x1
x2
x3
x4
x5
x6
⟶
x6
=
ap
x0
5
(proof)
Theorem
pack_b_b_r_e_e_5_eq2
pack_b_b_r_e_e_5_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
x5
=
ap
(
pack_b_b_r_e_e
x0
x1
x2
x3
x4
x5
)
5
(proof)
Known
and6I
and6I
:
∀ x0 x1 x2 x3 x4 x5 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
Theorem
pack_b_b_r_e_e_inj
pack_b_b_r_e_e_inj
:
∀ x0 x1 .
∀ x2 x3 x4 x5 :
ι →
ι → ι
.
∀ x6 x7 :
ι →
ι → ο
.
∀ x8 x9 x10 x11 .
pack_b_b_r_e_e
x0
x2
x4
x6
x8
x10
=
pack_b_b_r_e_e
x1
x3
x5
x7
x9
x11
⟶
and
(
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x2
x12
x13
=
x3
x12
x13
)
)
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x4
x12
x13
=
x5
x12
x13
)
)
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x6
x12
x13
=
x7
x12
x13
)
)
(
x8
=
x9
)
)
(
x10
=
x11
)
(proof)
Known
encode_r_ext
encode_r_ext
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
encode_r
x0
x1
=
encode_r
x0
x2
Known
encode_b_ext
encode_b_ext
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
encode_b
x0
x1
=
encode_b
x0
x2
Theorem
pack_b_b_r_e_e_ext
pack_b_b_r_e_e_ext
:
∀ x0 .
∀ x1 x2 x3 x4 :
ι →
ι → ι
.
∀ x5 x6 :
ι →
ι → ο
.
∀ x7 x8 .
(
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
x1
x9
x10
=
x2
x9
x10
)
⟶
(
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
x3
x9
x10
=
x4
x9
x10
)
⟶
(
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
iff
(
x5
x9
x10
)
(
x6
x9
x10
)
)
⟶
pack_b_b_r_e_e
x0
x1
x3
x5
x7
x8
=
pack_b_b_r_e_e
x0
x2
x4
x6
x7
x8
(proof)
Definition
struct_b_b_r_e_e
struct_b_b_r_e_e
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
∈
x2
)
⟶
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x2
⟶
∀ x6 .
x6
∈
x2
⟶
x4
x5
x6
∈
x2
)
⟶
∀ x5 :
ι →
ι → ο
.
∀ x6 .
x6
∈
x2
⟶
∀ x7 .
x7
∈
x2
⟶
x1
(
pack_b_b_r_e_e
x2
x3
x4
x5
x6
x7
)
)
⟶
x1
x0
Theorem
pack_struct_b_b_r_e_e_I
pack_struct_b_b_r_e_e_I
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
x4
∈
x0
)
⟶
∀ x3 :
ι →
ι → ο
.
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
struct_b_b_r_e_e
(
pack_b_b_r_e_e
x0
x1
x2
x3
x4
x5
)
(proof)
Theorem
pack_struct_b_b_r_e_e_E1
pack_struct_b_b_r_e_e_E1
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
struct_b_b_r_e_e
(
pack_b_b_r_e_e
x0
x1
x2
x3
x4
x5
)
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x1
x6
x7
∈
x0
(proof)
Theorem
pack_struct_b_b_r_e_e_E2
pack_struct_b_b_r_e_e_E2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
struct_b_b_r_e_e
(
pack_b_b_r_e_e
x0
x1
x2
x3
x4
x5
)
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x2
x6
x7
∈
x0
(proof)
Theorem
pack_struct_b_b_r_e_e_E4
pack_struct_b_b_r_e_e_E4
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
struct_b_b_r_e_e
(
pack_b_b_r_e_e
x0
x1
x2
x3
x4
x5
)
⟶
x4
∈
x0
(proof)
Theorem
pack_struct_b_b_r_e_e_E5
pack_struct_b_b_r_e_e_E5
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
struct_b_b_r_e_e
(
pack_b_b_r_e_e
x0
x1
x2
x3
x4
x5
)
⟶
x5
∈
x0
(proof)
Known
iff_refl
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Theorem
struct_b_b_r_e_e_eta
struct_b_b_r_e_e_eta
:
∀ x0 .
struct_b_b_r_e_e
x0
⟶
x0
=
pack_b_b_r_e_e
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
decode_b
(
ap
x0
2
)
)
(
decode_r
(
ap
x0
3
)
)
(
ap
x0
4
)
(
ap
x0
5
)
(proof)
Definition
unpack_b_b_r_e_e_i
unpack_b_b_r_e_e_i
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
ι →
ι → ι
.
x1
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
decode_b
(
ap
x0
2
)
)
(
decode_r
(
ap
x0
3
)
)
(
ap
x0
4
)
(
ap
x0
5
)
Theorem
unpack_b_b_r_e_e_i_eq
unpack_b_b_r_e_e_i_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
ι →
ι → ι
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 x6 .
(
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
x8
∈
x1
⟶
∀ x9 .
x9
∈
x1
⟶
x2
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι →
ι → ι
.
(
∀ x9 .
x9
∈
x1
⟶
∀ x10 .
x10
∈
x1
⟶
x3
x9
x10
=
x8
x9
x10
)
⟶
∀ x9 :
ι →
ι → ο
.
(
∀ x10 .
x10
∈
x1
⟶
∀ x11 .
x11
∈
x1
⟶
iff
(
x4
x10
x11
)
(
x9
x10
x11
)
)
⟶
x0
x1
x7
x8
x9
x5
x6
=
x0
x1
x2
x3
x4
x5
x6
)
⟶
unpack_b_b_r_e_e_i
(
pack_b_b_r_e_e
x1
x2
x3
x4
x5
x6
)
x0
=
x0
x1
x2
x3
x4
x5
x6
(proof)
Definition
unpack_b_b_r_e_e_o
unpack_b_b_r_e_e_o
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
ι →
ι → ο
.
x1
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
decode_b
(
ap
x0
2
)
)
(
decode_r
(
ap
x0
3
)
)
(
ap
x0
4
)
(
ap
x0
5
)
Theorem
unpack_b_b_r_e_e_o_eq
unpack_b_b_r_e_e_o_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
ι →
ι → ο
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 x6 .
(
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
x8
∈
x1
⟶
∀ x9 .
x9
∈
x1
⟶
x2
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι →
ι → ι
.
(
∀ x9 .
x9
∈
x1
⟶
∀ x10 .
x10
∈
x1
⟶
x3
x9
x10
=
x8
x9
x10
)
⟶
∀ x9 :
ι →
ι → ο
.
(
∀ x10 .
x10
∈
x1
⟶
∀ x11 .
x11
∈
x1
⟶
iff
(
x4
x10
x11
)
(
x9
x10
x11
)
)
⟶
x0
x1
x7
x8
x9
x5
x6
=
x0
x1
x2
x3
x4
x5
x6
)
⟶
unpack_b_b_r_e_e_o
(
pack_b_b_r_e_e
x1
x2
x3
x4
x5
x6
)
x0
=
x0
x1
x2
x3
x4
x5
x6
(proof)
Definition
OrderedFieldStruct
struct_b_b_r_e_e_ordered_field
:=
λ x0 .
and
(
struct_b_b_r_e_e
x0
)
(
unpack_b_b_r_e_e_o
x0
(
λ x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 :
ι →
ι → ο
.
λ x5 x6 .
explicit_OrderedField
x1
x5
x6
x2
x3
x4
)
)
Known
f16ac..
:
∀ x0 x1 x2 .
∀ x3 x4 x5 x6 :
ι →
ι → ι
.
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x3
x7
x8
=
x5
x7
x8
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x7
x8
=
x6
x7
x8
)
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
explicit_Field
x0
x1
x2
x5
x6
Known
iffI
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Theorem
a7a4d..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 x7 :
ι →
ι → ι
.
∀ x8 :
ι →
ι → ο
.
(
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
x3
x9
x10
=
x6
x9
x10
)
⟶
(
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
x4
x9
x10
=
x7
x9
x10
)
⟶
(
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
iff
(
x5
x9
x10
)
(
x8
x9
x10
)
)
⟶
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
explicit_OrderedField
x0
x1
x2
x6
x7
x8
(proof)
Known
iff_sym
iff_sym
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
iff
x1
x0
Theorem
explicit_OrderedField_repindep
explicit_OrderedField_repindep
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 x7 :
ι →
ι → ι
.
∀ x8 :
ι →
ι → ο
.
(
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
x3
x9
x10
=
x6
x9
x10
)
⟶
(
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
x4
x9
x10
=
x7
x9
x10
)
⟶
(
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
iff
(
x5
x9
x10
)
(
x8
x9
x10
)
)
⟶
iff
(
explicit_OrderedField
x0
x1
x2
x3
x4
x5
)
(
explicit_OrderedField
x0
x1
x2
x6
x7
x8
)
(proof)
Known
prop_ext
prop_ext
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
=
x1
Theorem
OrderedFieldStruct_unpack_eq
OrderedFieldStruct_unpack_eq
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
unpack_b_b_r_e_e_o
(
pack_b_b_r_e_e
x0
x1
x2
x3
x4
x5
)
(
λ x7 .
λ x8 x9 :
ι →
ι → ι
.
λ x10 :
ι →
ι → ο
.
λ x11 x12 .
explicit_OrderedField
x7
x11
x12
x8
x9
x10
)
=
explicit_OrderedField
x0
x4
x5
x1
x2
x3
(proof)
Definition
RealsStruct
RealsStruct
:=
λ x0 .
and
(
struct_b_b_r_e_e
x0
)
(
unpack_b_b_r_e_e_o
x0
(
λ x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 :
ι →
ι → ο
.
λ x5 x6 .
explicit_Reals
x1
x5
x6
x2
x3
x4
)
)
Known
explicit_Reals_I
explicit_Reals_I
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
lt
x0
x1
x2
x3
x4
x5
x1
x6
⟶
x5
x1
x7
⟶
∀ x8 : ο .
(
∀ x9 .
and
(
x9
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
(
x5
x7
(
x4
x9
x6
)
)
⟶
x8
)
⟶
x8
)
⟶
(
∀ x6 .
x6
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
∀ x7 .
x7
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
(
∀ x8 .
x8
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
and
(
x5
(
ap
x6
x8
)
(
ap
x7
x8
)
)
(
x5
(
ap
x6
x8
)
(
ap
x6
(
x3
x8
x2
)
)
)
)
(
x5
(
ap
x7
(
x3
x8
x2
)
)
(
ap
x7
x8
)
)
)
⟶
∀ x8 : ο .
(
∀ x9 .
and
(
x9
∈
x0
)
(
∀ x10 .
x10
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
x5
(
ap
x6
x10
)
x9
)
(
x5
x9
(
ap
x7
x10
)
)
)
⟶
x8
)
⟶
x8
)
⟶
explicit_Reals
x0
x1
x2
x3
x4
x5
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Theorem
32ac0..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 x7 :
ι →
ι → ι
.
∀ x8 :
ι →
ι → ο
.
(
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
x3
x9
x10
=
x6
x9
x10
)
⟶
(
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
x4
x9
x10
=
x7
x9
x10
)
⟶
(
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
iff
(
x5
x9
x10
)
(
x8
x9
x10
)
)
⟶
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
explicit_Reals
x0
x1
x2
x6
x7
x8
(proof)
Theorem
explicit_Reals_repindep
explicit_Reals_repindep
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 x7 :
ι →
ι → ι
.
∀ x8 :
ι →
ι → ο
.
(
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
x3
x9
x10
=
x6
x9
x10
)
⟶
(
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
x4
x9
x10
=
x7
x9
x10
)
⟶
(
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
iff
(
x5
x9
x10
)
(
x8
x9
x10
)
)
⟶
iff
(
explicit_Reals
x0
x1
x2
x3
x4
x5
)
(
explicit_Reals
x0
x1
x2
x6
x7
x8
)
(proof)
Theorem
RealsStruct_unpack_eq
RealsStruct_unpack_eq
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
unpack_b_b_r_e_e_o
(
pack_b_b_r_e_e
x0
x1
x2
x3
x4
x5
)
(
λ x7 .
λ x8 x9 :
ι →
ι → ι
.
λ x10 :
ι →
ι → ο
.
λ x11 x12 .
explicit_Reals
x7
x11
x12
x8
x9
x10
)
=
explicit_Reals
x0
x4
x5
x1
x2
x3
(proof)
previous assets