vout |
---|
Pr7pr../117f4.. 19.81 bars TMMN1../62608.. ownership of a464a.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0 TMacp../65d84.. ownership of af216.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0 PUZr2../e80a4.. doc published by Pr6Pc..Param explicit_Realsexplicit_Reals : ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ο) → οDefinition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Param ReplSep2ReplSep2 : ι → (ι → ι) → (ι → ι → ο) → CT2 ιParam TrueTrue : οParam explicit_Field_minusexplicit_Field_minus : ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → ι → ιKnown 455b2.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ ∀ x7 : ο . ((∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x6 x8 x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 x8 x9 = x6 x11 x13)) ⟶ x12) ⟶ x12) = x8) ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 x8 x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 x8 x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12) = x9) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ (∃ x11 . and (x11 ∈ x0) (x8 = x6 x9 x11)) ⟶ x10) ⟶ x10) ∈ x0) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12 ∈ x0 ⟶ (∃ x14 . and (x14 ∈ x0) (x8 = x6 x12 x14)) ⟶ x13) ⟶ x13)) x9 ⟶ x10) ⟶ x10) ∈ x0) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13)) ⟶ x12) ⟶ x12) = prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13)) ⟶ x12) ⟶ x12) ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12) = prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12) ⟶ x8 = x9) ⟶ x6 x1 x1 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ x6 x2 x1 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x8 = x6 x10 x12)) ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x9 = x6 x10 x12)) ⟶ x11) ⟶ x11))) (x3 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x9 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x9 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11))) ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) = x6 x11 x13)) ⟶ x12) ⟶ x12) = x3 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13)) ⟶ x12) ⟶ x12))) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12) = x3 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x8 = x6 x10 x12)) ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x9 = x6 x10 x12)) ⟶ x11) ⟶ x11))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x9 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x9 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11))))) (x3 (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x8 = x6 x10 x12)) ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x9 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x9 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11))) (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x9 = x6 x10 x12)) ⟶ x11) ⟶ x11)))) ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17)))) = x6 x11 x13)) ⟶ x12) ⟶ x12) = x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13)) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12) = x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13)) ⟶ x12) ⟶ x12)))) ⟶ x7) ⟶ x7Param explicit_Fieldexplicit_Field : ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → οParam explicit_Complexexplicit_Complex : ι → (ι → ι) → (ι → ι) → ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → οParam SubqSubq : ι → ι → οKnown 6b23b.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ explicit_Field (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (x6 x1 x1) (x6 x2 x1) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))))) ⟶ ∀ x7 : ο . (explicit_Complex (ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6) (λ x8 . x6 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10)))) x1) (λ x8 . x6 (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x8 x9 . x6 (x3 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) x10))))) (λ x8 x9 . x6 (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11))))))) ⟶ ((∀ x8 . x8 ∈ x0 ⟶ x6 x8 x1 = x8) ⟶ ∀ x8 : ο . ((∀ x9 : ο . ((∀ x10 : ο . ((∀ x11 : ο . ((∀ x12 : ο . (x0 ⊆ ReplSep2 x0 (λ x13 . x0) (λ x13 x14 . True) x6 ⟶ (∀ x13 . x13 ∈ x0 ⟶ prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x13 = x6 x15 x16))) = x13) ⟶ x12) ⟶ x12) ⟶ x6 x1 x1 = x1 ⟶ x11) ⟶ x11) ⟶ x6 x2 x1 = x2 ⟶ x10) ⟶ x10) ⟶ (∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ x6 (x3 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x10 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x11 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (x13 ∈ x0) (x10 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x10 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x11 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x11 = x6 x15 x16)))) x13)))) = x3 x10 x11) ⟶ x9) ⟶ x9) ⟶ (∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x10 = x6 x12 x13))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x12 . and (x12 ∈ x0) (x9 = x6 (prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x9 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (x12 ∈ x0) (x10 = x6 (prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x10 = x6 x14 x15)))) x12)))))) (x3 (x4 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) (prim0 (λ x12 . and (x12 ∈ x0) (x10 = x6 (prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x10 = x6 x14 x15)))) x12)))) (x4 (prim0 (λ x12 . and (x12 ∈ x0) (x9 = x6 (prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x9 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x10 = x6 x12 x13)))))) = x4 x9 x10) ⟶ x8) ⟶ x8) ⟶ x7) ⟶ x7Known 95cf4.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x6 x7 x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x6 x7 x8 = x6 x10 x12)) ⟶ x11) ⟶ x11) = x7) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x6 x7 x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x6 x7 x8 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11) = x8) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ prim0 (λ x8 . ∀ x9 : ο . (x8 ∈ x0 ⟶ (∃ x10 . and (x10 ∈ x0) (x7 = x6 x8 x10)) ⟶ x9) ⟶ x9) ∈ x0) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ prim0 (λ x8 . ∀ x9 : ο . (x8 ∈ x0 ⟶ x7 = x6 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13)) ⟶ x12) ⟶ x12)) x8 ⟶ x9) ⟶ x9) ∈ x0) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x7 = x6 x10 x12)) ⟶ x11) ⟶ x11) = prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x8 = x6 x10 x12)) ⟶ x11) ⟶ x11) ⟶ prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x7 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x7 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11) = prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11) ⟶ x7 = x8) ⟶ x6 x1 x1 ∈ ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6 ⟶ x6 x2 x1 ∈ ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6 ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ x6 (x3 (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ (∃ x11 . and (x11 ∈ x0) (x7 = x6 x9 x11)) ⟶ x10) ⟶ x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ (∃ x11 . and (x11 ∈ x0) (x8 = x6 x9 x11)) ⟶ x10) ⟶ x10))) (x3 (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12 ∈ x0 ⟶ (∃ x14 . and (x14 ∈ x0) (x7 = x6 x12 x14)) ⟶ x13) ⟶ x13)) x9 ⟶ x10) ⟶ x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12 ∈ x0 ⟶ (∃ x14 . and (x14 ∈ x0) (x8 = x6 x12 x14)) ⟶ x13) ⟶ x13)) x9 ⟶ x10) ⟶ x10))) ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x6 (x3 (prim0 (λ x15 . ∀ x16 : ο . (x15 ∈ x0 ⟶ (∃ x17 . and (x17 ∈ x0) (x7 = x6 x15 x17)) ⟶ x16) ⟶ x16)) (prim0 (λ x15 . ∀ x16 : ο . (x15 ∈ x0 ⟶ (∃ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17)) ⟶ x16) ⟶ x16))) (x3 (prim0 (λ x15 . ∀ x16 : ο . (x15 ∈ x0 ⟶ x7 = x6 (prim0 (λ x18 . ∀ x19 : ο . (x18 ∈ x0 ⟶ (∃ x20 . and (x20 ∈ x0) (x7 = x6 x18 x20)) ⟶ x19) ⟶ x19)) x15 ⟶ x16) ⟶ x16)) (prim0 (λ x15 . ∀ x16 : ο . (x15 ∈ x0 ⟶ x8 = x6 (prim0 (λ x18 . ∀ x19 : ο . (x18 ∈ x0 ⟶ (∃ x20 . and (x20 ∈ x0) (x8 = x6 x18 x20)) ⟶ x19) ⟶ x19)) x15 ⟶ x16) ⟶ x16))) = x6 x10 x12)) ⟶ x11) ⟶ x11) = x3 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x7 = x6 x10 x12)) ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x8 = x6 x10 x12)) ⟶ x11) ⟶ x11))) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x6 (x3 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x7 = x6 x13 x15)) ⟶ x14) ⟶ x14)) (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15)) ⟶ x14) ⟶ x14))) (x3 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ x7 = x6 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) x13 ⟶ x14) ⟶ x14)) (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ x8 = x6 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) x13 ⟶ x14) ⟶ x14))) = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x6 (x3 (prim0 (λ x18 . ∀ x19 : ο . (x18 ∈ x0 ⟶ (∃ x20 . and (x20 ∈ x0) (x7 = x6 x18 x20)) ⟶ x19) ⟶ x19)) (prim0 (λ x18 . ∀ x19 : ο . (x18 ∈ x0 ⟶ (∃ x20 . and (x20 ∈ x0) (x8 = x6 x18 x20)) ⟶ x19) ⟶ x19))) (x3 (prim0 (λ x18 . ∀ x19 : ο . (x18 ∈ x0 ⟶ x7 = x6 (prim0 (λ x21 . ∀ x22 : ο . (x21 ∈ x0 ⟶ (∃ x23 . and (x23 ∈ x0) (x7 = x6 x21 x23)) ⟶ x22) ⟶ x22)) x18 ⟶ x19) ⟶ x19)) (prim0 (λ x18 . ∀ x19 : ο . (x18 ∈ x0 ⟶ x8 = x6 (prim0 (λ x21 . ∀ x22 : ο . (x21 ∈ x0 ⟶ (∃ x23 . and (x23 ∈ x0) (x8 = x6 x21 x23)) ⟶ x22) ⟶ x22)) x18 ⟶ x19) ⟶ x19))) = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11) = x3 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x7 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x7 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11))) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ (∃ x11 . and (x11 ∈ x0) (x7 = x6 x9 x11)) ⟶ x10) ⟶ x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ (∃ x11 . and (x11 ∈ x0) (x8 = x6 x9 x11)) ⟶ x10) ⟶ x10))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12 ∈ x0 ⟶ (∃ x14 . and (x14 ∈ x0) (x7 = x6 x12 x14)) ⟶ x13) ⟶ x13)) x9 ⟶ x10) ⟶ x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12 ∈ x0 ⟶ (∃ x14 . and (x14 ∈ x0) (x8 = x6 x12 x14)) ⟶ x13) ⟶ x13)) x9 ⟶ x10) ⟶ x10))))) (x3 (x4 (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ (∃ x11 . and (x11 ∈ x0) (x7 = x6 x9 x11)) ⟶ x10) ⟶ x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12 ∈ x0 ⟶ (∃ x14 . and (x14 ∈ x0) (x8 = x6 x12 x14)) ⟶ x13) ⟶ x13)) x9 ⟶ x10) ⟶ x10))) (x4 (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12 ∈ x0 ⟶ (∃ x14 . and (x14 ∈ x0) (x7 = x6 x12 x14)) ⟶ x13) ⟶ x13)) x9 ⟶ x10) ⟶ x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ (∃ x11 . and (x11 ∈ x0) (x8 = x6 x9 x11)) ⟶ x10) ⟶ x10)))) ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x6 (x3 (x4 (prim0 (λ x15 . ∀ x16 : ο . (x15 ∈ x0 ⟶ (∃ x17 . and (x17 ∈ x0) (x7 = x6 x15 x17)) ⟶ x16) ⟶ x16)) (prim0 (λ x15 . ∀ x16 : ο . (x15 ∈ x0 ⟶ (∃ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17)) ⟶ x16) ⟶ x16))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . ∀ x16 : ο . (x15 ∈ x0 ⟶ x7 = x6 (prim0 (λ x18 . ∀ x19 : ο . (x18 ∈ x0 ⟶ (∃ x20 . and (x20 ∈ x0) (x7 = x6 x18 x20)) ⟶ x19) ⟶ x19)) x15 ⟶ x16) ⟶ x16)) (prim0 (λ x15 . ∀ x16 : ο . (x15 ∈ x0 ⟶ x8 = x6 (prim0 (λ x18 . ∀ x19 : ο . (x18 ∈ x0 ⟶ (∃ x20 . and (x20 ∈ x0) (x8 = x6 x18 x20)) ⟶ x19) ⟶ x19)) x15 ⟶ x16) ⟶ x16))))) (x3 (x4 (prim0 (λ x15 . ∀ x16 : ο . (x15 ∈ x0 ⟶ (∃ x17 . and (x17 ∈ x0) (x7 = x6 x15 x17)) ⟶ x16) ⟶ x16)) (prim0 (λ x15 . ∀ x16 : ο . (x15 ∈ x0 ⟶ x8 = x6 (prim0 (λ x18 . ∀ x19 : ο . (x18 ∈ x0 ⟶ (∃ x20 . and (x20 ∈ x0) (x8 = x6 x18 x20)) ⟶ x19) ⟶ x19)) x15 ⟶ x16) ⟶ x16))) (x4 (prim0 (λ x15 . ∀ x16 : ο . (x15 ∈ x0 ⟶ x7 = x6 (prim0 (λ x18 . ∀ x19 : ο . (x18 ∈ x0 ⟶ (∃ x20 . and (x20 ∈ x0) (x7 = x6 x18 x20)) ⟶ x19) ⟶ x19)) x15 ⟶ x16) ⟶ x16)) (prim0 (λ x15 . ∀ x16 : ο . (x15 ∈ x0 ⟶ (∃ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17)) ⟶ x16) ⟶ x16)))) = x6 x10 x12)) ⟶ x11) ⟶ x11) = x3 (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x7 = x6 x10 x12)) ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x8 = x6 x10 x12)) ⟶ x11) ⟶ x11))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x7 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x7 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11))))) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x7 = x6 x13 x15)) ⟶ x14) ⟶ x14)) (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15)) ⟶ x14) ⟶ x14))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ x7 = x6 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) x13 ⟶ x14) ⟶ x14)) (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ x8 = x6 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) x13 ⟶ x14) ⟶ x14))))) (x3 (x4 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x7 = x6 x13 x15)) ⟶ x14) ⟶ x14)) (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ x8 = x6 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) x13 ⟶ x14) ⟶ x14))) (x4 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ x7 = x6 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) x13 ⟶ x14) ⟶ x14)) (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15)) ⟶ x14) ⟶ x14)))) = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x6 (x3 (x4 (prim0 (λ x18 . ∀ x19 : ο . (x18 ∈ x0 ⟶ (∃ x20 . and (x20 ∈ x0) (x7 = x6 x18 x20)) ⟶ x19) ⟶ x19)) (prim0 (λ x18 . ∀ x19 : ο . (x18 ∈ x0 ⟶ (∃ x20 . and (x20 ∈ x0) (x8 = x6 x18 x20)) ⟶ x19) ⟶ x19))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x18 . ∀ x19 : ο . (x18 ∈ x0 ⟶ x7 = x6 (prim0 (λ x21 . ∀ x22 : ο . (x21 ∈ x0 ⟶ (∃ x23 . and (x23 ∈ x0) (x7 = x6 x21 x23)) ⟶ x22) ⟶ x22)) x18 ⟶ x19) ⟶ x19)) (prim0 (λ x18 . ∀ x19 : ο . (x18 ∈ x0 ⟶ x8 = x6 (prim0 (λ x21 . ∀ x22 : ο . (x21 ∈ x0 ⟶ (∃ x23 . and (x23 ∈ x0) (x8 = x6 x21 x23)) ⟶ x22) ⟶ x22)) x18 ⟶ x19) ⟶ x19))))) (x3 (x4 (prim0 (λ x18 . ∀ x19 : ο . (x18 ∈ x0 ⟶ (∃ x20 . and (x20 ∈ x0) (x7 = x6 x18 x20)) ⟶ x19) ⟶ x19)) (prim0 (λ x18 . ∀ x19 : ο . (x18 ∈ x0 ⟶ x8 = x6 (prim0 (λ x21 . ∀ x22 : ο . (x21 ∈ x0 ⟶ (∃ x23 . and (x23 ∈ x0) (x8 = x6 x21 x23)) ⟶ x22) ⟶ x22)) x18 ⟶ x19) ⟶ x19))) (x4 (prim0 (λ x18 . ∀ x19 : ο . (x18 ∈ x0 ⟶ x7 = x6 (prim0 (λ x21 . ∀ x22 : ο . (x21 ∈ x0 ⟶ (∃ x23 . and (x23 ∈ x0) (x7 = x6 x21 x23)) ⟶ x22) ⟶ x22)) x18 ⟶ x19) ⟶ x19)) (prim0 (λ x18 . ∀ x19 : ο . (x18 ∈ x0 ⟶ (∃ x20 . and (x20 ∈ x0) (x8 = x6 x18 x20)) ⟶ x19) ⟶ x19)))) = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11) = x3 (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x7 = x6 x10 x12)) ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11))) (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x7 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x7 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x8 = x6 x10 x12)) ⟶ x11) ⟶ x11)))) ⟶ explicit_Field x0 x1 x2 x3 x4 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ ∀ x11 : ο . (x7 = x9 ⟶ x8 = x10 ⟶ x11) ⟶ x11) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17)))) = x6 x11 x13)) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17)))) = x6 x11 x13)) ⟶ x12) ⟶ x12)))) = x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)))) = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13)) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)))) = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13)) ⟶ x12) ⟶ x12))))) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ (x7 = x6 x1 x1 ⟶ ∀ x8 : ο . x8) ⟶ ∃ x8 . and (x8 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) (x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13)) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13)) ⟶ x12) ⟶ x12)))) = x6 x2 x1)) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) = x6 x11 x13)) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) = x6 x11 x13)) ⟶ x12) ⟶ x12)))) = x6 (x3 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)))) = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17)))) = x6 x11 x13)) ⟶ x12) ⟶ x12))) (x3 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)))) ⟶ explicit_Field (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (x6 x1 x1) (x6 x2 x1) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ (∃ x11 . and (x11 ∈ x0) (x7 = x6 x9 x11)) ⟶ x10) ⟶ x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ (∃ x11 . and (x11 ∈ x0) (x8 = x6 x9 x11)) ⟶ x10) ⟶ x10))) (x3 (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12 ∈ x0 ⟶ (∃ x14 . and (x14 ∈ x0) (x7 = x6 x12 x14)) ⟶ x13) ⟶ x13)) x9 ⟶ x10) ⟶ x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12 ∈ x0 ⟶ (∃ x14 . and (x14 ∈ x0) (x8 = x6 x12 x14)) ⟶ x13) ⟶ x13)) x9 ⟶ x10) ⟶ x10)))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ (∃ x11 . and (x11 ∈ x0) (x7 = x6 x9 x11)) ⟶ x10) ⟶ x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ (∃ x11 . and (x11 ∈ x0) (x8 = x6 x9 x11)) ⟶ x10) ⟶ x10))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12 ∈ x0 ⟶ (∃ x14 . and (x14 ∈ x0) (x7 = x6 x12 x14)) ⟶ x13) ⟶ x13)) x9 ⟶ x10) ⟶ x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12 ∈ x0 ⟶ (∃ x14 . and (x14 ∈ x0) (x8 = x6 x12 x14)) ⟶ x13) ⟶ x13)) x9 ⟶ x10) ⟶ x10))))) (x3 (x4 (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ (∃ x11 . and (x11 ∈ x0) (x7 = x6 x9 x11)) ⟶ x10) ⟶ x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12 ∈ x0 ⟶ (∃ x14 . and (x14 ∈ x0) (x8 = x6 x12 x14)) ⟶ x13) ⟶ x13)) x9 ⟶ x10) ⟶ x10))) (x4 (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12 ∈ x0 ⟶ (∃ x14 . and (x14 ∈ x0) (x7 = x6 x12 x14)) ⟶ x13) ⟶ x13)) x9 ⟶ x10) ⟶ x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ (∃ x11 . and (x11 ∈ x0) (x8 = x6 x9 x11)) ⟶ x10) ⟶ x10)))))Param explicit_OrderedFieldexplicit_OrderedField : ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ο) → οParam ltlt : ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ο) → ι → ι → οParam SepSep : ι → (ι → ο) → ιParam natOfOrderedField_pnatOfOrderedField_p : ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ο) → ι → οParam setexpsetexp : ι → ι → ιParam apap : ι → ι → ιKnown explicit_Reals_Eexplicit_Reals_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ο . (explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ explicit_OrderedField x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ lt x0 x1 x2 x3 x4 x5 x1 x7 ⟶ x5 x1 x8 ⟶ ∃ x9 . and (x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) (x5 x8 (x4 x9 x7))) ⟶ (∀ x7 . x7 ∈ setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) ⟶ ∀ x8 . x8 ∈ setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) ⟶ (∀ x9 . x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5) ⟶ and (and (x5 (ap x7 x9) (ap x8 x9)) (x5 (ap x7 x9) (ap x7 (x3 x9 x2)))) (x5 (ap x8 (x3 x9 x2)) (ap x8 x9))) ⟶ ∃ x9 . and (x9 ∈ x0) (∀ x11 . x11 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5) ⟶ and (x5 (ap x7 x11) x9) (x5 x9 (ap x8 x11)))) ⟶ x6) ⟶ explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ x6Param iffiff : ο → ο → οParam oror : ο → ο → οKnown explicit_OrderedField_Eexplicit_OrderedField_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ο . (explicit_OrderedField x0 x1 x2 x3 x4 x5 ⟶ explicit_Field x0 x1 x2 x3 x4 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x5 x7 x8 ⟶ x5 x8 x9 ⟶ x5 x7 x9) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ iff (and (x5 x7 x8) (x5 x8 x7)) (x7 = x8)) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ or (x5 x7 x8) (x5 x8 x7)) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x5 x7 x8 ⟶ x5 (x3 x7 x9) (x3 x8 x9)) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x5 x1 x7 ⟶ x5 x1 x8 ⟶ x5 x1 (x4 x7 x8)) ⟶ x6) ⟶ explicit_OrderedField x0 x1 x2 x3 x4 x5 ⟶ x6Theorem a464a.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ ∀ x11 : ο . (x7 = x9 ⟶ x8 = x10 ⟶ x11) ⟶ x11) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17)))) = x6 x11 x13)) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17)))) = x6 x11 x13)) ⟶ x12) ⟶ x12)))) = x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)))) = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13)) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)))) = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13)) ⟶ x12) ⟶ x12))))) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ (x7 = x6 x1 x1 ⟶ ∀ x8 : ο . x8) ⟶ ∃ x8 . and (x8 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) (x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13)) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13)) ⟶ x12) ⟶ x12)))) = x6 x2 x1)) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) = x6 x11 x13)) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) = x6 x11 x13)) ⟶ x12) ⟶ x12)))) = x6 (x3 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)))) = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17)))) = x6 x11 x13)) ⟶ x12) ⟶ x12))) (x3 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)))) ⟶ and (explicit_Complex (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (x8 ∈ x0) (∃ x9 . and (x9 ∈ x0) (x7 = x6 x8 x9)))) x1) (λ x7 . x6 (prim0 (λ x8 . and (x8 ∈ x0) (x7 = x6 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10)))))))) ((∀ x7 . x7 ∈ x0 ⟶ x6 x7 x1 = x7) ⟶ and (and (and (and (and (x0 ⊆ ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (∀ x7 . x7 ∈ x0 ⟶ prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10))) = x7)) (x6 x1 x1 = x1)) (x6 x2 x1 = x2)) (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x6 (x3 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10)))) = x3 x7 x8)) (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))))) = x4 x7 x8))...
|
|