∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ ∀ x11 : ο . (x7 = x9 ⟶ x8 = x10 ⟶ x11) ⟶ x11) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x7 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)))) = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x9 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x9 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x9 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x9 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)))) = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x7 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x9 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x9 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x9 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x9 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)))) = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)))) = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)))) = x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)))) = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x9 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x7 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x7 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x7 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x7 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)))) = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)))) = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x7 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x7 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x7 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x7 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)))) = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x9 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12))))) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ (x7 = x6 x1 x1 ⟶ ∀ x8 : ο . x8) ⟶ ∀ x8 : ο . (∀ x9 . and (x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) (x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x7 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x9 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x7 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x9 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)))) = x6 x2 x1) ⟶ x8) ⟶ x8) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x7 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x9 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x9 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x7 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x9 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x9 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)))) = x6 (x3 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)))) = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)))) = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12))) (x3 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x7 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x7 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x7 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x7 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)))) = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x7 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x9 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x9 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x7 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x7 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x9 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x9 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∀ x24 : ο . (∀ x25 . and (x25 ∈ x0) (x7 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∀ x21 : ο . (∀ x22 . and (x22 ∈ x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)))) = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)))) ⟶ and (explicit_Complex (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (x8 ∈ x0) (∀ x9 : ο . (∀ x10 . and (x10 ∈ x0) (x7 = x6 x8 x10) ⟶ x9) ⟶ x9))) x1) (λ x7 . x6 (prim0 (λ x8 . and (x8 ∈ x0) (x7 = x6 (prim0 (λ x10 . and (x10 ∈ x0) (∀ x11 : ο . (∀ x12 . and (x12 ∈ x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10)))) (x3 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9)))) (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10))))))) ((∀ x7 . x7 ∈ x0 ⟶ x6 x7 x1 = x7) ⟶ and (and (and (and (and (x0 ⊆ ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (∀ x7 . x7 ∈ x0 ⟶ prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10)) = x7)) (x6 x1 x1 = x1)) (x6 x2 x1 = x2)) (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x6 (x3 (prim0 (λ x10 . and (x10 ∈ x0) (∀ x11 : ο . (∀ x12 . and (x12 ∈ x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) (prim0 (λ x10 . and (x10 ∈ x0) (∀ x11 : ο . (∀ x12 . and (x12 ∈ x0) (x8 = x6 x10 x12) ⟶ x11) ⟶ x11)))) (x3 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x7 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x8 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10)))) = x3 x7 x8)) (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∀ x11 : ο . (∀ x12 . and (x12 ∈ x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) (prim0 (λ x10 . and (x10 ∈ x0) (∀ x11 : ο . (∀ x12 . and (x12 ∈ x0) (x8 = x6 x10 x12) ⟶ x11) ⟶ x11)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x7 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x8 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∀ x11 : ο . (∀ x12 . and (x12 ∈ x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x8 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10)))) (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x7 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (∀ x11 : ο . (∀ x12 . and (x12 ∈ x0) (x8 = x6 x10 x12) ⟶ x11) ⟶ x11))))) = x4 x7 x8)) |
|