Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCit../f8369..
PUYYy../9080f..
vout
PrCit../eb86f.. 3.93 bars
TMQ3J../6d92f.. ownership of 02907.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMGqk../80b78.. ownership of 66da7.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUSK4../52021.. doc published by Pr4zB..
Param equipequip : ιιο
Param SepSep : ι(ιο) → ι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition DirGraphOutNeighbors := λ x0 . λ x1 : ι → ι → ο . λ x2 . {x3 ∈ x0|and (x2 = x3∀ x4 : ο . x4) (x1 x2 x3)}
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition u4 := ordsucc u3
Definition u5 := ordsucc u4
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param setminussetminus : ιιι
Param binunionbinunion : ιιι
Param SingSing : ιι
Param binintersectbinintersect : ιιι
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Param SetAdjoinSetAdjoin : ιιι
Param UPairUPair : ιιι
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Param nat_pnat_p : ιο
Param atleastpatleastp : ιιο
Known 4fb58..Pigeonhole_not_atleastp_ordsucc : ∀ x0 . nat_p x0not (atleastp (ordsucc x0) x0)
Known nat_4nat_4 : nat_p 4
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Known Subq_atleastpSubq_atleastp : ∀ x0 x1 . x0x1atleastp x0 x1
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known FalseEFalseE : False∀ x0 : ο . x0
Known setminusE2setminusE2 : ∀ x0 x1 x2 . x2setminus x0 x1nIn x2 x1
Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x2x0
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known cfabd.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3DirGraphOutNeighbors x0 x1 x2x2DirGraphOutNeighbors x0 x1 x3
Known 14338.. : ∀ x0 x1 x2 x3 . x2SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3
Known setminusE1setminusE1 : ∀ x0 x1 x2 . x2setminus x0 x1x2x0
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known b253c.. : ∀ x0 x1 x2 x3 . x3SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3
Known binintersectIbinintersectI : ∀ x0 x1 x2 . x2x0x2x1x2binintersect x0 x1
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known 69a9c.. : ∀ x0 x1 x2 x3 . x0SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3
Known e588e.. : ∀ x0 x1 x2 x3 . x1SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3
Known 76c0f.. : ∀ x0 x1 x2 x3 . x3SetAdjoin (UPair x0 x1) x2∀ x4 : ι → ο . x4 x0x4 x1x4 x2x4 x3
Known 38089.. : ∀ x0 x1 x2 x3 . atleastp (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) u4
Theorem 02907.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)(∀ x2 . x2x0equip (DirGraphOutNeighbors x0 x1 x2) u5)∀ x2 x3 x4 x5 x6 x7 . x6x0x5x0x6 = {x9 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x2) (Sing x2))|equip (binintersect (DirGraphOutNeighbors x0 x1 x9) (DirGraphOutNeighbors x0 x1 x2)) u1}x4 = setminus (DirGraphOutNeighbors x0 x1 x2) (Sing x3)(∀ x8 . x8x6not (x1 x3 x8))(∀ x8 . x8x0∀ x9 : ο . (x8 = x2x9)(x8 = x3x9)(x8x4x9)(x8x5x9)(x8x6x9)(x8x7x9)x9)(∀ x8 . x8x6∀ x9 : ο . (∀ x10 . x10x6∀ x11 . x11x6(x10 = x11∀ x12 : ο . x12)x10DirGraphOutNeighbors x0 x1 x8x11DirGraphOutNeighbors x0 x1 x8not (x1 x10 x11)(∀ x12 . x12x6nIn x12 (SetAdjoin (UPair x8 x10) x11)not (x1 x8 x12))x9)x9)(∀ x8 . x8x6∀ x9 . x9x6(x8 = x9∀ x10 : ο . x10)∀ x10 . x10binintersect (DirGraphOutNeighbors x0 x1 x8) (DirGraphOutNeighbors x0 x1 x9)x10x6)(∀ x8 . x8x6nIn x8 x5)∀ x8 x9 : ι → ι . (∀ x10 . x10x6∀ x11 . x11DirGraphOutNeighbors x0 x1 x2x1 x11 x10x11 = x8 x10)(∀ x10 . x10x6x9 x10x5)(∀ x10 . x10x6x1 x10 (x9 x10))(∀ x10 . x10x5∀ x11 : ο . (∀ x12 . and (x12x6) (x9 x12 = x10)x11)x11)∀ x10 . x10x6∀ x11 : ο . (∀ x12 . and (x12x7) (x1 x10 x12)x11)x11 (proof)
Theorem 02907.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)(∀ x2 . x2x0equip (DirGraphOutNeighbors x0 x1 x2) u5)∀ x2 x3 x4 x5 x6 x7 . x6x0x5x0x6 = {x9 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x2) (Sing x2))|equip (binintersect (DirGraphOutNeighbors x0 x1 x9) (DirGraphOutNeighbors x0 x1 x2)) u1}x4 = setminus (DirGraphOutNeighbors x0 x1 x2) (Sing x3)(∀ x8 . x8x6not (x1 x3 x8))(∀ x8 . x8x0∀ x9 : ο . (x8 = x2x9)(x8 = x3x9)(x8x4x9)(x8x5x9)(x8x6x9)(x8x7x9)x9)(∀ x8 . x8x6∀ x9 : ο . (∀ x10 . x10x6∀ x11 . x11x6(x10 = x11∀ x12 : ο . x12)x10DirGraphOutNeighbors x0 x1 x8x11DirGraphOutNeighbors x0 x1 x8not (x1 x10 x11)(∀ x12 . x12x6nIn x12 (SetAdjoin (UPair x8 x10) x11)not (x1 x8 x12))x9)x9)(∀ x8 . x8x6∀ x9 . x9x6(x8 = x9∀ x10 : ο . x10)∀ x10 . x10binintersect (DirGraphOutNeighbors x0 x1 x8) (DirGraphOutNeighbors x0 x1 x9)x10x6)(∀ x8 . x8x6nIn x8 x5)∀ x8 x9 : ι → ι . (∀ x10 . x10x6∀ x11 . x11DirGraphOutNeighbors x0 x1 x2x1 x11 x10x11 = x8 x10)(∀ x10 . x10x6x9 x10x5)(∀ x10 . x10x6x1 x10 (x9 x10))(∀ x10 . x10x5∀ x11 : ο . (∀ x12 . and (x12x6) (x9 x12 = x10)x11)x11)∀ x10 . x10x6∀ x11 : ο . (∀ x12 . and (x12x7) (x1 x10 x12)x11)x11 (proof)