Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCit..
/
f1831..
PUcyi..
/
6d637..
vout
PrCit..
/
1dd71..
3.93 bars
TMaTA..
/
dca66..
ownership of
29078..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMZ31..
/
4ee11..
ownership of
fc8e1..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMMST..
/
6e7a2..
ownership of
c82b0..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMHgN..
/
9c7e5..
ownership of
9e024..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
PUSqC..
/
ec81a..
doc published by
Pr4zB..
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Param
u3
:
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
DirGraphOutNeighbors
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
λ x2 .
{x3 ∈
x0
|
and
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
(
x1
x2
x3
)
}
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Param
SetAdjoin
SetAdjoin
:
ι
→
ι
→
ι
Param
UPair
UPair
:
ι
→
ι
→
ι
Known
aa241..
:
∀ x0 x1 x2 .
∀ x3 :
ι → ο
.
x3
x0
⟶
x3
x1
⟶
x3
x2
⟶
∀ x4 .
x4
∈
SetAdjoin
(
UPair
x0
x1
)
x2
⟶
x3
x4
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
5d098..
:
∀ x0 x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
(
x1
=
x2
⟶
∀ x4 : ο .
x4
)
⟶
(
x1
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
atleastp
u3
x0
Known
6be8c..
:
∀ x0 x1 x2 .
x0
∈
SetAdjoin
(
UPair
x0
x1
)
x2
Known
535ce..
:
∀ x0 x1 x2 .
x1
∈
SetAdjoin
(
UPair
x0
x1
)
x2
Known
f4e2f..
:
∀ x0 x1 x2 .
x2
∈
SetAdjoin
(
UPair
x0
x1
)
x2
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
c82b0..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
∀ x2 x3 .
x2
∈
x0
⟶
x3
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x1
x2
x3
⟶
∀ x4 .
x4
∈
setminus
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x2
)
⟶
not
(
x1
x2
x4
)
(proof)
Param
u6
:
ι
Theorem
29078..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u6
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x1
x3
x4
)
)
)
⟶
∀ x2 x3 .
x2
∈
x0
⟶
x3
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x1
x2
x3
⟶
∀ x4 .
x4
∈
setminus
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x2
)
⟶
not
(
x1
x2
x4
)
(proof)