∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3 ⟶ x1 x3 x2) ⟶ (∀ x2 . x2 ⊆ x0 ⟶ atleastp u3 x2 ⟶ not (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ x1 x3 x4)) ⟶ (∀ x2 . x2 ⊆ x0 ⟶ atleastp u6 x2 ⟶ not (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ not (x1 x3 x4))) ⟶ ∀ x2 x3 . x2 ∈ x0 ⟶ x3 ∈ DirGraphOutNeighbors x0 x1 x2 ⟶ (x2 = x3 ⟶ ∀ x4 : ο . x4) ⟶ x1 x2 x3 ⟶ ∀ x4 . x4 ∈ setminus (DirGraphOutNeighbors x0 x1 x3) (Sing x2) ⟶ not (x1 x2 x4) |
|