Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrDS5..
/
30160..
PUd5M..
/
be07a..
vout
PrDS5..
/
e33cf..
0.10 bars
TMFQm..
/
20ebc..
ownership of
ff8de..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMa5Q..
/
b0473..
ownership of
199d6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMW21..
/
1af6a..
ownership of
a0947..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZz6..
/
99599..
ownership of
d9e73..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZUg..
/
6abbb..
ownership of
04e50..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbpv..
/
901d8..
ownership of
ef03e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQ8H..
/
014c0..
ownership of
34f11..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLpv..
/
70f0f..
ownership of
099d7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRvw..
/
6e525..
ownership of
496f4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQyV..
/
4eb6d..
ownership of
2e84c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNzQ..
/
07afb..
ownership of
976f6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJDh..
/
47191..
ownership of
9df78..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXLT..
/
3592a..
ownership of
06172..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPKY..
/
51741..
ownership of
418b0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRKA..
/
255e3..
ownership of
1d829..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLcL..
/
7e5d4..
ownership of
e7aa9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNwe..
/
440ae..
ownership of
b4143..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMah6..
/
a9f1e..
ownership of
cfd3b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHiJ..
/
54de5..
ownership of
c24a2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYCZ..
/
a1e11..
ownership of
a3c03..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEwz..
/
d2459..
ownership of
6f218..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMS8H..
/
2bdb4..
ownership of
89eb4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXDF..
/
a34b9..
ownership of
74c36..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVKE..
/
96e2b..
ownership of
3b383..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMe1C..
/
57efa..
ownership of
2762b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZgx..
/
5ede8..
ownership of
26668..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFTu..
/
e13c8..
ownership of
51a36..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNvZ..
/
34991..
ownership of
013a3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNbg..
/
cc8b6..
ownership of
447f9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKmv..
/
924d0..
ownership of
b58ce..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMX8K..
/
4bcfa..
ownership of
6929d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdQb..
/
d737f..
ownership of
25550..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZFb..
/
7e5b6..
ownership of
bd3b5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMThx..
/
0a704..
ownership of
e95b9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWMw..
/
f7ad2..
ownership of
2521c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMK7k..
/
c5ec7..
ownership of
6f617..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUL5f..
/
92d8f..
doc published by
PrCmT..
Known
df_ch__df_oc__df_ch0__df_shs__df_span__df_chj__df_chsup__df_pjh__df_cm__df_hosum__df_homul__df_hodif__df_hfsum__df_hfmul__df_h0op__df_iop__df_nmop__df_cnop
:
∀ x0 : ο .
(
wceq
cch
(
crab
(
λ x1 .
wss
(
cima
chli
(
co
(
cv
x1
)
cn
cmap
)
)
(
cv
x1
)
)
(
λ x1 .
csh
)
)
⟶
wceq
cort
(
cmpt
(
λ x1 .
cpw
chil
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wceq
(
co
(
cv
x2
)
(
cv
x3
)
csp
)
cc0
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
chil
)
)
)
⟶
wceq
c0h
(
csn
c0v
)
⟶
wceq
cph
(
cmpt2
(
λ x1 x2 .
csh
)
(
λ x1 x2 .
csh
)
(
λ x1 x2 .
cima
cva
(
cxp
(
cv
x1
)
(
cv
x2
)
)
)
)
⟶
wceq
cspn
(
cmpt
(
λ x1 .
cpw
chil
)
(
λ x1 .
cint
(
crab
(
λ x2 .
wss
(
cv
x1
)
(
cv
x2
)
)
(
λ x2 .
csh
)
)
)
)
⟶
wceq
chj
(
cmpt2
(
λ x1 x2 .
cpw
chil
)
(
λ x1 x2 .
cpw
chil
)
(
λ x1 x2 .
cfv
(
cfv
(
cun
(
cv
x1
)
(
cv
x2
)
)
cort
)
cort
)
)
⟶
wceq
chsup
(
cmpt
(
λ x1 .
cpw
(
cpw
chil
)
)
(
λ x1 .
cfv
(
cfv
(
cuni
(
cv
x1
)
)
cort
)
cort
)
)
⟶
wceq
cpjh
(
cmpt
(
λ x1 .
cch
)
(
λ x1 .
cmpt
(
λ x2 .
chil
)
(
λ x2 .
crio
(
λ x3 .
wrex
(
λ x4 .
wceq
(
cv
x2
)
(
co
(
cv
x3
)
(
cv
x4
)
cva
)
)
(
λ x4 .
cfv
(
cv
x1
)
cort
)
)
(
λ x3 .
cv
x1
)
)
)
)
⟶
wceq
ccm
(
copab
(
λ x1 x2 .
wa
(
wa
(
wcel
(
cv
x1
)
cch
)
(
wcel
(
cv
x2
)
cch
)
)
(
wceq
(
cv
x1
)
(
co
(
cin
(
cv
x1
)
(
cv
x2
)
)
(
cin
(
cv
x1
)
(
cfv
(
cv
x2
)
cort
)
)
chj
)
)
)
)
⟶
wceq
chos
(
cmpt2
(
λ x1 x2 .
co
chil
chil
cmap
)
(
λ x1 x2 .
co
chil
chil
cmap
)
(
λ x1 x2 .
cmpt
(
λ x3 .
chil
)
(
λ x3 .
co
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
cva
)
)
)
⟶
wceq
chot
(
cmpt2
(
λ x1 x2 .
cc
)
(
λ x1 x2 .
co
chil
chil
cmap
)
(
λ x1 x2 .
cmpt
(
λ x3 .
chil
)
(
λ x3 .
co
(
cv
x1
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
csm
)
)
)
⟶
wceq
chod
(
cmpt2
(
λ x1 x2 .
co
chil
chil
cmap
)
(
λ x1 x2 .
co
chil
chil
cmap
)
(
λ x1 x2 .
cmpt
(
λ x3 .
chil
)
(
λ x3 .
co
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
cmv
)
)
)
⟶
wceq
chfs
(
cmpt2
(
λ x1 x2 .
co
cc
chil
cmap
)
(
λ x1 x2 .
co
cc
chil
cmap
)
(
λ x1 x2 .
cmpt
(
λ x3 .
chil
)
(
λ x3 .
co
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
caddc
)
)
)
⟶
wceq
chft
(
cmpt2
(
λ x1 x2 .
cc
)
(
λ x1 x2 .
co
cc
chil
cmap
)
(
λ x1 x2 .
cmpt
(
λ x3 .
chil
)
(
λ x3 .
co
(
cv
x1
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
cmul
)
)
)
⟶
wceq
ch0o
(
cfv
c0h
cpjh
)
⟶
wceq
chio
(
cfv
chil
cpjh
)
⟶
wceq
cnop
(
cmpt
(
λ x1 .
co
chil
chil
cmap
)
(
λ x1 .
csup
(
cab
(
λ x2 .
wrex
(
λ x3 .
wa
(
wbr
(
cfv
(
cv
x3
)
cno
)
c1
cle
)
(
wceq
(
cv
x2
)
(
cfv
(
cfv
(
cv
x3
)
(
cv
x1
)
)
cno
)
)
)
(
λ x3 .
chil
)
)
)
cxr
clt
)
)
⟶
wceq
ccop
(
crab
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wrex
(
λ x4 .
wral
(
λ x5 .
wbr
(
cfv
(
co
(
cv
x5
)
(
cv
x2
)
cmv
)
cno
)
(
cv
x4
)
clt
⟶
wbr
(
cfv
(
co
(
cfv
(
cv
x5
)
(
cv
x1
)
)
(
cfv
(
cv
x2
)
(
cv
x1
)
)
cmv
)
cno
)
(
cv
x3
)
clt
)
(
λ x5 .
chil
)
)
(
λ x4 .
crp
)
)
(
λ x3 .
crp
)
)
(
λ x2 .
chil
)
)
(
λ x1 .
co
chil
chil
cmap
)
)
⟶
x0
)
⟶
x0
Theorem
df_ch
:
wceq
cch
(
crab
(
λ x0 .
wss
(
cima
chli
(
co
(
cv
x0
)
cn
cmap
)
)
(
cv
x0
)
)
(
λ x0 .
csh
)
)
(proof)
Theorem
df_oc
:
wceq
cort
(
cmpt
(
λ x0 .
cpw
chil
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wceq
(
co
(
cv
x1
)
(
cv
x2
)
csp
)
cc0
)
(
λ x2 .
cv
x0
)
)
(
λ x1 .
chil
)
)
)
(proof)
Theorem
df_ch0
:
wceq
c0h
(
csn
c0v
)
(proof)
Theorem
df_shs
:
wceq
cph
(
cmpt2
(
λ x0 x1 .
csh
)
(
λ x0 x1 .
csh
)
(
λ x0 x1 .
cima
cva
(
cxp
(
cv
x0
)
(
cv
x1
)
)
)
)
(proof)
Theorem
df_span
:
wceq
cspn
(
cmpt
(
λ x0 .
cpw
chil
)
(
λ x0 .
cint
(
crab
(
λ x1 .
wss
(
cv
x0
)
(
cv
x1
)
)
(
λ x1 .
csh
)
)
)
)
(proof)
Theorem
df_chj
:
wceq
chj
(
cmpt2
(
λ x0 x1 .
cpw
chil
)
(
λ x0 x1 .
cpw
chil
)
(
λ x0 x1 .
cfv
(
cfv
(
cun
(
cv
x0
)
(
cv
x1
)
)
cort
)
cort
)
)
(proof)
Theorem
df_chsup
:
wceq
chsup
(
cmpt
(
λ x0 .
cpw
(
cpw
chil
)
)
(
λ x0 .
cfv
(
cfv
(
cuni
(
cv
x0
)
)
cort
)
cort
)
)
(proof)
Theorem
df_pjh
:
wceq
cpjh
(
cmpt
(
λ x0 .
cch
)
(
λ x0 .
cmpt
(
λ x1 .
chil
)
(
λ x1 .
crio
(
λ x2 .
wrex
(
λ x3 .
wceq
(
cv
x1
)
(
co
(
cv
x2
)
(
cv
x3
)
cva
)
)
(
λ x3 .
cfv
(
cv
x0
)
cort
)
)
(
λ x2 .
cv
x0
)
)
)
)
(proof)
Theorem
df_cm
:
wceq
ccm
(
copab
(
λ x0 x1 .
wa
(
wa
(
wcel
(
cv
x0
)
cch
)
(
wcel
(
cv
x1
)
cch
)
)
(
wceq
(
cv
x0
)
(
co
(
cin
(
cv
x0
)
(
cv
x1
)
)
(
cin
(
cv
x0
)
(
cfv
(
cv
x1
)
cort
)
)
chj
)
)
)
)
(proof)
Theorem
df_hosum
:
wceq
chos
(
cmpt2
(
λ x0 x1 .
co
chil
chil
cmap
)
(
λ x0 x1 .
co
chil
chil
cmap
)
(
λ x0 x1 .
cmpt
(
λ x2 .
chil
)
(
λ x2 .
co
(
cfv
(
cv
x2
)
(
cv
x0
)
)
(
cfv
(
cv
x2
)
(
cv
x1
)
)
cva
)
)
)
(proof)
Theorem
df_homul
:
wceq
chot
(
cmpt2
(
λ x0 x1 .
cc
)
(
λ x0 x1 .
co
chil
chil
cmap
)
(
λ x0 x1 .
cmpt
(
λ x2 .
chil
)
(
λ x2 .
co
(
cv
x0
)
(
cfv
(
cv
x2
)
(
cv
x1
)
)
csm
)
)
)
(proof)
Theorem
df_hodif
:
wceq
chod
(
cmpt2
(
λ x0 x1 .
co
chil
chil
cmap
)
(
λ x0 x1 .
co
chil
chil
cmap
)
(
λ x0 x1 .
cmpt
(
λ x2 .
chil
)
(
λ x2 .
co
(
cfv
(
cv
x2
)
(
cv
x0
)
)
(
cfv
(
cv
x2
)
(
cv
x1
)
)
cmv
)
)
)
(proof)
Theorem
df_hfsum
:
wceq
chfs
(
cmpt2
(
λ x0 x1 .
co
cc
chil
cmap
)
(
λ x0 x1 .
co
cc
chil
cmap
)
(
λ x0 x1 .
cmpt
(
λ x2 .
chil
)
(
λ x2 .
co
(
cfv
(
cv
x2
)
(
cv
x0
)
)
(
cfv
(
cv
x2
)
(
cv
x1
)
)
caddc
)
)
)
(proof)
Theorem
df_hfmul
:
wceq
chft
(
cmpt2
(
λ x0 x1 .
cc
)
(
λ x0 x1 .
co
cc
chil
cmap
)
(
λ x0 x1 .
cmpt
(
λ x2 .
chil
)
(
λ x2 .
co
(
cv
x0
)
(
cfv
(
cv
x2
)
(
cv
x1
)
)
cmul
)
)
)
(proof)
Theorem
df_h0op
:
wceq
ch0o
(
cfv
c0h
cpjh
)
(proof)
Theorem
df_iop
:
wceq
chio
(
cfv
chil
cpjh
)
(proof)
Theorem
df_nmop
:
wceq
cnop
(
cmpt
(
λ x0 .
co
chil
chil
cmap
)
(
λ x0 .
csup
(
cab
(
λ x1 .
wrex
(
λ x2 .
wa
(
wbr
(
cfv
(
cv
x2
)
cno
)
c1
cle
)
(
wceq
(
cv
x1
)
(
cfv
(
cfv
(
cv
x2
)
(
cv
x0
)
)
cno
)
)
)
(
λ x2 .
chil
)
)
)
cxr
clt
)
)
(proof)
Theorem
df_cnop
:
wceq
ccop
(
crab
(
λ x0 .
wral
(
λ x1 .
wral
(
λ x2 .
wrex
(
λ x3 .
wral
(
λ x4 .
wbr
(
cfv
(
co
(
cv
x4
)
(
cv
x1
)
cmv
)
cno
)
(
cv
x3
)
clt
⟶
wbr
(
cfv
(
co
(
cfv
(
cv
x4
)
(
cv
x0
)
)
(
cfv
(
cv
x1
)
(
cv
x0
)
)
cmv
)
cno
)
(
cv
x2
)
clt
)
(
λ x4 .
chil
)
)
(
λ x3 .
crp
)
)
(
λ x2 .
crp
)
)
(
λ x1 .
chil
)
)
(
λ x0 .
co
chil
chil
cmap
)
)
(proof)