Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrRJn..
/
b558b..
PUR8p..
/
3a6f8..
vout
PrRJn..
/
62e69..
9.89 bars
TMS3W..
/
36d48..
ownership of
b4523..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMcmF..
/
0925c..
ownership of
3e746..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMNUb..
/
a6806..
ownership of
c1dff..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMQJ7..
/
a7fc9..
ownership of
222db..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMJ4i..
/
036fc..
ownership of
b67dd..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMLbH..
/
397a3..
ownership of
96dcc..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMdRa..
/
f8614..
ownership of
9fc1b..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMXeY..
/
5ad4c..
ownership of
e6296..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMVwe..
/
8e8bb..
ownership of
6c9e3..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMbXY..
/
eeaf4..
ownership of
e54e0..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMNEX..
/
7f7eb..
ownership of
4eec6..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMFuz..
/
c96af..
ownership of
690aa..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMHUV..
/
28c17..
ownership of
91074..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMd16..
/
0b27a..
ownership of
15d7f..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMExJ..
/
ebf5f..
ownership of
49c7e..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMUUU..
/
2a436..
ownership of
37a44..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMdku..
/
52a39..
ownership of
692bd..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMd5J..
/
e2617..
ownership of
214de..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMUNT..
/
8f1ef..
ownership of
fd6e0..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMVPH..
/
2fd53..
ownership of
035b4..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMLTj..
/
7a2d4..
ownership of
b270b..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMMEv..
/
94c5e..
ownership of
53995..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMcS9..
/
325cf..
ownership of
a3b2d..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMdTd..
/
3d40f..
ownership of
51d5e..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMGye..
/
a2d31..
ownership of
f2017..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMbky..
/
e2971..
ownership of
270bc..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMW4u..
/
0a223..
ownership of
289a1..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMPfg..
/
92a83..
ownership of
7b46a..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMXA5..
/
c9ac6..
ownership of
5281f..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMRyk..
/
86385..
ownership of
3c725..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMazw..
/
d8e7a..
ownership of
5715b..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMKLC..
/
b9748..
ownership of
1fb29..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMLj5..
/
7dda5..
ownership of
a1757..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMHbM..
/
a454f..
ownership of
85109..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMWvQ..
/
40a6b..
ownership of
81e66..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMcvm..
/
a75b0..
ownership of
35207..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMPgB..
/
28b9c..
ownership of
f91a2..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMa4B..
/
1e242..
ownership of
d961c..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMKV5..
/
a586f..
ownership of
58949..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMa4K..
/
235cd..
ownership of
7bb12..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMU9t..
/
b3140..
ownership of
675f4..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMExo..
/
11243..
ownership of
50806..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMQGB..
/
ffeb0..
ownership of
4b34b..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMLjF..
/
7c584..
ownership of
61bcd..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMS2K..
/
7e1a5..
ownership of
7f2e4..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMSB3..
/
93bb6..
ownership of
0562a..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMceb..
/
90eda..
ownership of
b8e07..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMJHU..
/
0adf4..
ownership of
be573..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMHtT..
/
410f2..
ownership of
91922..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMPug..
/
be666..
ownership of
58d0d..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMFDq..
/
bb66b..
ownership of
adebb..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMZNe..
/
ae597..
ownership of
4d085..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMMpb..
/
d8ef3..
ownership of
da724..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMaQL..
/
d5cea..
ownership of
cc559..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMXXK..
/
a5c0c..
ownership of
a9894..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMGqi..
/
67f51..
ownership of
3827e..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMSQP..
/
e09bc..
ownership of
c6963..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMGyg..
/
b1ee7..
ownership of
9937c..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
PUWiW..
/
4f471..
doc published by
PrQUS..
Param
SNo
SNo
:
ι
→
ο
Param
1eb0a..
:
ι
→
ο
Param
bbc71..
:
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
Known
d5242..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
1eb0a..
(
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
)
Param
8dd2c..
:
ι
→
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
340c0..
:
∀ x0 .
1eb0a..
x0
⟶
and
(
SNo
(
8dd2c..
x0
)
)
(
∃ x1 .
and
(
SNo
x1
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x0
=
bbc71..
(
8dd2c..
x0
)
x1
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
Known
95571..
:
∀ x0 .
1eb0a..
x0
⟶
SNo
(
8dd2c..
x0
)
Known
212d5..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
8dd2c..
(
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x0
Param
d4639..
:
(
ι
→
ι
) →
ι
→
ι
Known
26f49..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
d4639..
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x1
=
bbc71..
(
x0
x1
)
(
d4639..
x0
x1
)
x2
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
Known
fd099..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
∀ x1 .
1eb0a..
x1
⟶
SNo
(
d4639..
x0
x1
)
Known
33b4a..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 x2 x3 x4 x5 x6 x7 x8 .
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
d4639..
x0
(
bbc71..
x1
x2
x3
x4
x5
x6
x7
x8
)
=
x2
Param
50208..
:
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Known
9b0e1..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
50208..
x0
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
(
50208..
x0
x1
x2
)
x3
x5
x7
x9
x11
)
)
)
)
)
)
Known
1131a..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
∀ x2 .
1eb0a..
x2
⟶
SNo
(
50208..
x0
x1
x2
)
Known
90339..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
50208..
x0
x1
(
bbc71..
x2
x3
x4
x5
x6
x7
x8
x9
)
=
x4
Param
8d7df..
:
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Known
0a376..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
8d7df..
x0
x1
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
(
8d7df..
x0
x1
x2
x3
)
x4
x6
x8
x10
)
)
)
)
)
Known
5e734..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
∀ x3 .
1eb0a..
x3
⟶
SNo
(
8d7df..
x0
x1
x2
x3
)
Known
71a99..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 x4 x5 x6 x7 x8 x9 x10 .
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
8d7df..
x0
x1
x2
(
bbc71..
x3
x4
x5
x6
x7
x8
x9
x10
)
=
x6
Param
41ec1..
:
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Known
15adc..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
41ec1..
x0
x1
x2
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
(
41ec1..
x0
x1
x2
x3
x4
)
x5
x7
x9
)
)
)
)
Known
af528..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
∀ x4 .
1eb0a..
x4
⟶
SNo
(
41ec1..
x0
x1
x2
x3
x4
)
Known
26f65..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 x5 x6 x7 x8 x9 x10 x11 .
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
41ec1..
x0
x1
x2
x3
(
bbc71..
x4
x5
x6
x7
x8
x9
x10
x11
)
=
x8
Param
28f5a..
:
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Known
baa4b..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x6
x8
x10
)
)
)
)
)
⟶
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
28f5a..
x0
x1
x2
x3
x4
x5
)
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
(
28f5a..
x0
x1
x2
x3
x4
x5
)
x6
x8
)
)
)
Known
69bbd..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x6
x8
x10
)
)
)
)
)
⟶
∀ x5 .
1eb0a..
x5
⟶
SNo
(
28f5a..
x0
x1
x2
x3
x4
x5
)
Known
62fb0..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x6
x8
x10
)
)
)
)
)
⟶
(
∀ x5 .
1eb0a..
x5
⟶
SNo
(
x4
x5
)
)
⟶
∀ x5 x6 x7 x8 x9 x10 x11 x12 .
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
28f5a..
x0
x1
x2
x3
x4
(
bbc71..
x5
x6
x7
x8
x9
x10
x11
x12
)
=
x10
Param
717b4..
:
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Known
42518..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x6
x8
x10
)
)
)
)
)
⟶
(
∀ x5 .
1eb0a..
x5
⟶
SNo
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
1eb0a..
x6
⟶
and
(
SNo
(
x5
x6
)
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
x7
x9
)
)
)
)
⟶
∀ x6 .
1eb0a..
x6
⟶
and
(
SNo
(
717b4..
x0
x1
x2
x3
x4
x5
x6
)
)
(
∃ x7 .
and
(
SNo
x7
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
(
717b4..
x0
x1
x2
x3
x4
x5
x6
)
x7
)
)
Known
9599d..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x6
x8
x10
)
)
)
)
)
⟶
(
∀ x5 .
1eb0a..
x5
⟶
SNo
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
1eb0a..
x6
⟶
and
(
SNo
(
x5
x6
)
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
x7
x9
)
)
)
)
⟶
∀ x6 .
1eb0a..
x6
⟶
SNo
(
717b4..
x0
x1
x2
x3
x4
x5
x6
)
Known
c7d23..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x6
x8
x10
)
)
)
)
)
⟶
(
∀ x5 .
1eb0a..
x5
⟶
SNo
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
1eb0a..
x6
⟶
and
(
SNo
(
x5
x6
)
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
x7
x9
)
)
)
)
⟶
(
∀ x6 .
1eb0a..
x6
⟶
SNo
(
x5
x6
)
)
⟶
∀ x6 x7 x8 x9 x10 x11 x12 x13 .
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
717b4..
x0
x1
x2
x3
x4
x5
(
bbc71..
x6
x7
x8
x9
x10
x11
x12
x13
)
=
x12
Param
053de..
:
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Known
0b166..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x6
x8
x10
)
)
)
)
)
⟶
(
∀ x5 .
1eb0a..
x5
⟶
SNo
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
1eb0a..
x6
⟶
and
(
SNo
(
x5
x6
)
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
x7
x9
)
)
)
)
⟶
(
∀ x6 .
1eb0a..
x6
⟶
SNo
(
x5
x6
)
)
⟶
∀ x6 :
ι → ι
.
(
∀ x7 .
1eb0a..
x7
⟶
and
(
SNo
(
x6
x7
)
)
(
∃ x8 .
and
(
SNo
x8
)
(
x7
=
bbc71..
(
x0
x7
)
(
x1
x7
)
(
x2
x7
)
(
x3
x7
)
(
x4
x7
)
(
x5
x7
)
(
x6
x7
)
x8
)
)
)
⟶
∀ x7 .
1eb0a..
x7
⟶
and
(
SNo
(
053de..
x0
x1
x2
x3
x4
x5
x6
x7
)
)
(
x7
=
bbc71..
(
x0
x7
)
(
x1
x7
)
(
x2
x7
)
(
x3
x7
)
(
x4
x7
)
(
x5
x7
)
(
x6
x7
)
(
053de..
x0
x1
x2
x3
x4
x5
x6
x7
)
)
Known
0c70a..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x6
x8
x10
)
)
)
)
)
⟶
(
∀ x5 .
1eb0a..
x5
⟶
SNo
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
1eb0a..
x6
⟶
and
(
SNo
(
x5
x6
)
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
x7
x9
)
)
)
)
⟶
(
∀ x6 .
1eb0a..
x6
⟶
SNo
(
x5
x6
)
)
⟶
∀ x6 :
ι → ι
.
(
∀ x7 .
1eb0a..
x7
⟶
and
(
SNo
(
x6
x7
)
)
(
∃ x8 .
and
(
SNo
x8
)
(
x7
=
bbc71..
(
x0
x7
)
(
x1
x7
)
(
x2
x7
)
(
x3
x7
)
(
x4
x7
)
(
x5
x7
)
(
x6
x7
)
x8
)
)
)
⟶
∀ x7 .
1eb0a..
x7
⟶
SNo
(
053de..
x0
x1
x2
x3
x4
x5
x6
x7
)
Known
48feb..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∃ x2 .
and
(
SNo
x2
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
∃ x14 .
and
(
SNo
x14
)
(
x1
=
bbc71..
(
x0
x1
)
x2
x4
x6
x8
x10
x12
x14
)
)
)
)
)
)
)
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
∃ x13 .
and
(
SNo
x13
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x3
x5
x7
x9
x11
x13
)
)
)
)
)
)
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∃ x4 .
and
(
SNo
x4
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
∃ x12 .
and
(
SNo
x12
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x4
x6
x8
x10
x12
)
)
)
)
)
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x5
x7
x9
x11
)
)
)
)
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∃ x6 .
and
(
SNo
x6
)
(
∃ x8 .
and
(
SNo
x8
)
(
∃ x10 .
and
(
SNo
x10
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x6
x8
x10
)
)
)
)
)
⟶
(
∀ x5 .
1eb0a..
x5
⟶
SNo
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
1eb0a..
x6
⟶
and
(
SNo
(
x5
x6
)
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
x7
x9
)
)
)
)
⟶
(
∀ x6 .
1eb0a..
x6
⟶
SNo
(
x5
x6
)
)
⟶
∀ x6 :
ι → ι
.
(
∀ x7 .
1eb0a..
x7
⟶
and
(
SNo
(
x6
x7
)
)
(
∃ x8 .
and
(
SNo
x8
)
(
x7
=
bbc71..
(
x0
x7
)
(
x1
x7
)
(
x2
x7
)
(
x3
x7
)
(
x4
x7
)
(
x5
x7
)
(
x6
x7
)
x8
)
)
)
⟶
(
∀ x7 .
1eb0a..
x7
⟶
SNo
(
x6
x7
)
)
⟶
∀ x7 x8 x9 x10 x11 x12 x13 x14 .
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
053de..
x0
x1
x2
x3
x4
x5
x6
(
bbc71..
x7
x8
x9
x10
x11
x12
x13
x14
)
=
x14
Definition
c6963..
:=
d4639..
8dd2c..
Definition
a9894..
:=
50208..
8dd2c..
c6963..
Definition
da724..
:=
8d7df..
8dd2c..
c6963..
a9894..
Definition
adebb..
:=
41ec1..
8dd2c..
c6963..
a9894..
da724..
Definition
91922..
:=
28f5a..
8dd2c..
c6963..
a9894..
da724..
adebb..
Definition
b8e07..
:=
717b4..
8dd2c..
c6963..
a9894..
da724..
adebb..
91922..
Definition
7f2e4..
:=
053de..
8dd2c..
c6963..
a9894..
da724..
adebb..
91922..
b8e07..
Theorem
4b34b..
:
∀ x0 .
1eb0a..
x0
⟶
and
(
SNo
(
c6963..
x0
)
)
(
∃ x1 .
and
(
SNo
x1
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
∃ x11 .
and
(
SNo
x11
)
(
x0
=
bbc71..
(
8dd2c..
x0
)
(
c6963..
x0
)
x1
x3
x5
x7
x9
x11
)
)
)
)
)
)
)
...
Theorem
675f4..
:
∀ x0 .
1eb0a..
x0
⟶
SNo
(
c6963..
x0
)
...
Theorem
58949..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
c6963..
(
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x1
...
Theorem
f91a2..
:
∀ x0 .
1eb0a..
x0
⟶
and
(
SNo
(
a9894..
x0
)
)
(
∃ x1 .
and
(
SNo
x1
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
∃ x9 .
and
(
SNo
x9
)
(
x0
=
bbc71..
(
8dd2c..
x0
)
(
c6963..
x0
)
(
a9894..
x0
)
x1
x3
x5
x7
x9
)
)
)
)
)
)
...
Theorem
81e66..
:
∀ x0 .
1eb0a..
x0
⟶
SNo
(
a9894..
x0
)
...
Theorem
a1757..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
a9894..
(
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x2
...
Theorem
5715b..
:
∀ x0 .
1eb0a..
x0
⟶
and
(
SNo
(
da724..
x0
)
)
(
∃ x1 .
and
(
SNo
x1
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
∃ x7 .
and
(
SNo
x7
)
(
x0
=
bbc71..
(
8dd2c..
x0
)
(
c6963..
x0
)
(
a9894..
x0
)
(
da724..
x0
)
x1
x3
x5
x7
)
)
)
)
)
...
Theorem
5281f..
:
∀ x0 .
1eb0a..
x0
⟶
SNo
(
da724..
x0
)
...
Theorem
289a1..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
da724..
(
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x3
...
Theorem
f2017..
:
∀ x0 .
1eb0a..
x0
⟶
and
(
SNo
(
adebb..
x0
)
)
(
∃ x1 .
and
(
SNo
x1
)
(
∃ x3 .
and
(
SNo
x3
)
(
∃ x5 .
and
(
SNo
x5
)
(
x0
=
bbc71..
(
8dd2c..
x0
)
(
c6963..
x0
)
(
a9894..
x0
)
(
da724..
x0
)
(
adebb..
x0
)
x1
x3
x5
)
)
)
)
...
Theorem
a3b2d..
:
∀ x0 .
1eb0a..
x0
⟶
SNo
(
adebb..
x0
)
...
Theorem
b270b..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
adebb..
(
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x4
...
Theorem
fd6e0..
:
∀ x0 .
1eb0a..
x0
⟶
and
(
SNo
(
91922..
x0
)
)
(
∃ x1 .
and
(
SNo
x1
)
(
∃ x3 .
and
(
SNo
x3
)
(
x0
=
bbc71..
(
8dd2c..
x0
)
(
c6963..
x0
)
(
a9894..
x0
)
(
da724..
x0
)
(
adebb..
x0
)
(
91922..
x0
)
x1
x3
)
)
)
...
Theorem
692bd..
:
∀ x0 .
1eb0a..
x0
⟶
SNo
(
91922..
x0
)
...
Theorem
49c7e..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
91922..
(
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x5
...
Theorem
91074..
:
∀ x0 .
1eb0a..
x0
⟶
and
(
SNo
(
b8e07..
x0
)
)
(
∃ x1 .
and
(
SNo
x1
)
(
x0
=
bbc71..
(
8dd2c..
x0
)
(
c6963..
x0
)
(
a9894..
x0
)
(
da724..
x0
)
(
adebb..
x0
)
(
91922..
x0
)
(
b8e07..
x0
)
x1
)
)
...
Theorem
4eec6..
:
∀ x0 .
1eb0a..
x0
⟶
SNo
(
b8e07..
x0
)
...
Theorem
6c9e3..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
b8e07..
(
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x6
...
Theorem
9fc1b..
:
∀ x0 .
1eb0a..
x0
⟶
and
(
SNo
(
7f2e4..
x0
)
)
(
x0
=
bbc71..
(
8dd2c..
x0
)
(
c6963..
x0
)
(
a9894..
x0
)
(
da724..
x0
)
(
adebb..
x0
)
(
91922..
x0
)
(
b8e07..
x0
)
(
7f2e4..
x0
)
)
...
Theorem
b67dd..
:
∀ x0 .
1eb0a..
x0
⟶
SNo
(
7f2e4..
x0
)
...
Theorem
c1dff..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
7f2e4..
(
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x7
...
Theorem
b4523..
:
∀ x0 .
1eb0a..
x0
⟶
x0
=
bbc71..
(
8dd2c..
x0
)
(
c6963..
x0
)
(
a9894..
x0
)
(
da724..
x0
)
(
adebb..
x0
)
(
91922..
x0
)
(
b8e07..
x0
)
(
7f2e4..
x0
)
...