Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrR5e../d1591..
PUfRB../371d9..
vout
PrR5e../becd3.. 19.97 bars
TMRLB../8127b.. ownership of 256ef.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMYCc../41c7c.. ownership of e8f73.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
PUVmo../19db3.. doc published by Pr6Pc..
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param explicit_Field_minusexplicit_Field_minus : ιιι(ιιι) → (ιιι) → ιι
Param SepSep : ι(ιο) → ι
Param explicit_Fieldexplicit_Field : ιιι(ιιι) → (ιιι) → ο
Param explicit_Realsexplicit_Reals : ιιι(ιιι) → (ιιι) → (ιιο) → ο
Param explicit_Complexexplicit_Complex : ι(ιι) → (ιι) → ιιι(ιιι) → (ιιι) → ο
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known explicit_Complex_Iexplicit_Complex_I : ∀ x0 . ∀ x1 x2 : ι → ι . ∀ x3 x4 x5 . ∀ x6 x7 : ι → ι → ι . explicit_Field x0 x3 x4 x6 x7(∃ x8 : ι → ι → ο . explicit_Reals {x10 ∈ x0|x1 x10 = x10} x3 x4 x6 x7 x8)(∀ x8 . x8x0x2 x8{x9 ∈ x0|x1 x9 = x9})x5x0(∀ x8 . x8x0x1 x8x0)(∀ x8 . x8x0x2 x8x0)(∀ x8 . x8x0x8 = x6 (x1 x8) (x7 x5 (x2 x8)))(∀ x8 . x8x0∀ x9 . x9x0x1 x8 = x1 x9x2 x8 = x2 x9x8 = x9)x6 (x7 x5 x5) x4 = x3explicit_Complex x0 x1 x2 x3 x4 x5 x6 x7
Known and6Iand6I : ∀ x0 x1 x2 x3 x4 x5 : ο . x0x1x2x3x4x5and (and (and (and (and x0 x1) x2) x3) x4) x5
Theorem 256ef.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . ∀ x7 . (∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0x6 x8 x9 = x6 x10 x11and (x8 = x10) (x9 = x11))(∀ x8 . x8x0∀ x9 . x9x0x3 x8 x9x0)(∀ x8 . x8x0∀ x9 . x9x0x3 x8 x9 = x3 x9 x8)x1x0(∀ x8 . x8x0x3 x1 x8 = x8)(∀ x8 . x8x0∀ x9 . x9x0x4 x8 x9x0)(∀ x8 . x8x0∀ x9 . x9x0x4 x8 x9 = x4 x9 x8)x2x0(∀ x8 . x8x0x4 x2 x8 = x8)explicit_Field_minus x0 x1 x2 x3 x4 x2x0(∀ x8 . x8x0∀ x9 . x9x0x6 x8 x9x7)(∀ x8 . x8x7∀ x9 : ι → ο . (∀ x10 . x10x0∀ x11 . x11x0x8 = x6 x10 x11x9 (x6 x10 x11))x9 x8)(∀ x8 . x8x0∀ x9 . x9x0prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x6 x8 x9 = x6 x11 x12))) = x8)(∀ x8 . x8x0∀ x9 . x9x0prim0 (λ x11 . and (x11x0) (x6 x8 x9 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 x8 x9 = x6 x13 x14)))) x11)) = x9)(∀ x8 . x8x0x6 x8 x1{x9 ∈ x7|x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x9 = x6 x11 x12)))) x1 = x9})(∀ x8 . x8x7prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10)))x0)(∀ x8 . x8x7prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9))x0)(∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0x6 (x3 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 x8 x9 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 x10 x11 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (x13x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x6 x8 x9 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x6 x10 x11 = x6 x15 x16)))) x13)))) = x6 (x3 x8 x10) (x3 x9 x11))(∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 x8 x9 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 x10 x11 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x6 x8 x9 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x6 x10 x11 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 x8 x9 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x6 x10 x11 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x6 x8 x9 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 x10 x11 = x6 x13 x14)))))) = x6 (x3 (x4 x8 x10) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 x9 x11))) (x3 (x4 x8 x11) (x4 x9 x10)))(∀ x8 . x8x0x3 (explicit_Field_minus x0 x1 x2 x3 x4 x8) x8 = x1)(∀ x8 . x8x0x3 x8 (explicit_Field_minus x0 x1 x2 x3 x4 x8) = x1)explicit_Field_minus x0 x1 x2 x3 x4 x1 = x1(∀ x8 . x8x0x4 x1 x8 = x1)(∀ x8 . x8x0x4 x8 x1 = x1)explicit_Field x7 (x6 x1 x1) (x6 x2 x1) (λ x8 x9 . x6 (x3 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10))))) (λ x8 x9 . x6 (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11)))))))explicit_Reals {x8 ∈ x7|x6 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) x1 = x8} (x6 x1 x1) (x6 x2 x1) (λ x8 x9 . x6 (x3 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10))))) (λ x8 x9 . x6 (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11))))))) (λ x8 x9 . x5 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11)))))and (explicit_Complex x7 (λ x8 . x6 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10)))) x1) (λ x8 . x6 (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x8 x9 . x6 (x3 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10))))) (λ x8 x9 . x6 (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11)))))))) ((∀ x8 . x8x0x6 x8 x1 = x8)and (and (and (and (and (x0x7) (∀ x8 . x8x0prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11))) = x8)) (x6 x1 x1 = x1)) (x6 x2 x1 = x2)) (∀ x8 . x8x0∀ x9 . x9x0x6 (x3 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x9 = x6 x11 x12))))) (x3 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))) x11)))) = x3 x8 x9)) (∀ x8 . x8x0∀ x9 . x9x0x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x9 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x9 = x6 x11 x12)))))) = x4 x8 x9))
...