Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrKM8..
/
f0b2a..
PUbap..
/
c22aa..
vout
PrKM8..
/
73854..
0.10 bars
TMLwm..
/
03266..
ownership of
40add..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdTa..
/
9903e..
ownership of
13ca2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXdt..
/
0e3ff..
ownership of
e1787..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGZy..
/
b71b4..
ownership of
8c877..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQpn..
/
b3302..
ownership of
3c238..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcjA..
/
8f42c..
ownership of
d3821..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTfd..
/
6a45d..
ownership of
6d5be..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPH1..
/
c9fc0..
ownership of
1004e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcAe..
/
63673..
ownership of
60a65..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPi2..
/
5945c..
ownership of
2a57f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGhB..
/
ceda0..
ownership of
e3a5f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLZP..
/
571e6..
ownership of
fc9c1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMP4y..
/
3c93c..
ownership of
5d46d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGVu..
/
90abc..
ownership of
398d7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPY9..
/
0d9d4..
ownership of
31080..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTU7..
/
0282a..
ownership of
e5a5e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMaQ..
/
a15f2..
ownership of
79d4c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWen..
/
859aa..
ownership of
b48b3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbts..
/
14e67..
ownership of
8215b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEtb..
/
e09cb..
ownership of
e5879..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMV4h..
/
ee1fc..
ownership of
e797c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHDz..
/
97463..
ownership of
0f07b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYqJ..
/
f84ad..
ownership of
ce8bf..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbrG..
/
d0632..
ownership of
95522..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHsv..
/
35cb9..
ownership of
a5655..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGzv..
/
27bc0..
ownership of
61e5b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFh3..
/
7cdb9..
ownership of
5be81..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdap..
/
48861..
ownership of
1f396..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQjf..
/
a95a8..
ownership of
d38e4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMM7P..
/
74fb4..
ownership of
b8054..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLtr..
/
39e82..
ownership of
39871..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHDM..
/
99bd2..
ownership of
4531a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQWY..
/
f14b2..
ownership of
fcb90..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYe5..
/
8c338..
ownership of
2233e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRbg..
/
30acb..
ownership of
9a65e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKPC..
/
24730..
ownership of
6179b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUVbx..
/
ae264..
doc published by
PrCmT..
Known
df_bigo__df_blen__df_dig__df_setrecs__df_pg__df_gte__df_gt__df_sinh__df_cosh__df_tanh__df_sec__df_csc__df_cot__df_logbALT__df_reflexive__df_irreflexive__df_alsi__df_alsc
:
∀ x0 : ο .
(
wceq
cbigo
(
cmpt
(
λ x1 .
co
cr
cr
cpm
)
(
λ x1 .
crab
(
λ x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wral
(
λ x5 .
wbr
(
cfv
(
cv
x5
)
(
cv
x2
)
)
(
co
(
cv
x4
)
(
cfv
(
cv
x5
)
(
cv
x1
)
)
cmul
)
cle
)
(
λ x5 .
cin
(
cdm
(
cv
x2
)
)
(
co
(
cv
x3
)
cpnf
cico
)
)
)
(
λ x4 .
cr
)
)
(
λ x3 .
cr
)
)
(
λ x2 .
co
cr
cr
cpm
)
)
)
⟶
wceq
cblen
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cif
(
wceq
(
cv
x1
)
cc0
)
c1
(
co
(
cfv
(
co
c2
(
cfv
(
cv
x1
)
cabs
)
clogb
)
cfl
)
c1
caddc
)
)
)
⟶
wceq
cdig
(
cmpt
(
λ x1 .
cn
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cz
)
(
λ x2 x3 .
co
cc0
cpnf
cico
)
(
λ x2 x3 .
co
(
cfv
(
co
(
co
(
cv
x1
)
(
cneg
(
cv
x2
)
)
cexp
)
(
cv
x3
)
cmul
)
cfl
)
(
cv
x1
)
cmo
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
csetrecs
x1
)
(
cuni
(
cab
(
λ x2 .
∀ x3 .
(
∀ x4 .
wss
(
cv
x4
)
(
cv
x2
)
⟶
wss
(
cv
x4
)
(
cv
x3
)
⟶
wss
(
cfv
(
cv
x4
)
x1
)
(
cv
x3
)
)
⟶
wss
(
cv
x2
)
(
cv
x3
)
)
)
)
)
⟶
wceq
cpg
(
csetrecs
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cxp
(
cpw
(
cv
x1
)
)
(
cpw
(
cv
x1
)
)
)
)
)
⟶
wceq
cge_real
(
ccnv
cle
)
⟶
wceq
cgt
(
ccnv
clt
)
⟶
wceq
csinh
(
cmpt
(
λ x1 .
cc
)
(
λ x1 .
co
(
cfv
(
co
ci
(
cv
x1
)
cmul
)
csin
)
ci
cdiv
)
)
⟶
wceq
ccosh
(
cmpt
(
λ x1 .
cc
)
(
λ x1 .
cfv
(
co
ci
(
cv
x1
)
cmul
)
ccos
)
)
⟶
wceq
ctanh
(
cmpt
(
λ x1 .
cima
(
ccnv
ccosh
)
(
cdif
cc
(
csn
cc0
)
)
)
(
λ x1 .
co
(
cfv
(
co
ci
(
cv
x1
)
cmul
)
ctan
)
ci
cdiv
)
)
⟶
wceq
csec
(
cmpt
(
λ x1 .
crab
(
λ x2 .
wne
(
cfv
(
cv
x2
)
ccos
)
cc0
)
(
λ x2 .
cc
)
)
(
λ x1 .
co
c1
(
cfv
(
cv
x1
)
ccos
)
cdiv
)
)
⟶
wceq
ccsc
(
cmpt
(
λ x1 .
crab
(
λ x2 .
wne
(
cfv
(
cv
x2
)
csin
)
cc0
)
(
λ x2 .
cc
)
)
(
λ x1 .
co
c1
(
cfv
(
cv
x1
)
csin
)
cdiv
)
)
⟶
wceq
ccot
(
cmpt
(
λ x1 .
crab
(
λ x2 .
wne
(
cfv
(
cv
x2
)
csin
)
cc0
)
(
λ x2 .
cc
)
)
(
λ x1 .
co
(
cfv
(
cv
x1
)
ccos
)
(
cfv
(
cv
x1
)
csin
)
cdiv
)
)
⟶
wceq
clog_
(
cmpt
(
λ x1 .
cdif
cc
(
cpr
cc0
c1
)
)
(
λ x1 .
cmpt
(
λ x2 .
cdif
cc
(
csn
cc0
)
)
(
λ x2 .
co
(
cfv
(
cv
x2
)
clog
)
(
cfv
(
cv
x1
)
clog
)
cdiv
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wb
(
wreflexive
x1
x2
)
(
wa
(
wss
x2
(
cxp
x1
x1
)
)
(
wral
(
λ x3 .
wbr
(
cv
x3
)
(
cv
x3
)
x2
)
(
λ x3 .
x1
)
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wb
(
wirreflexive
x1
x2
)
(
wa
(
wss
x2
(
cxp
x1
x1
)
)
(
wral
(
λ x3 .
wn
(
wbr
(
cv
x3
)
(
cv
x3
)
x2
)
)
(
λ x3 .
x1
)
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wb
(
walsi
x1
x2
)
(
wa
(
∀ x3 .
x1
x3
⟶
x2
x3
)
(
wex
x1
)
)
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 :
ι →
ι → ο
.
wb
(
walsc
x1
x2
)
(
wa
(
wral
x1
x2
)
(
wex
(
λ x3 .
wcel
(
cv
x3
)
(
x2
x3
)
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_bigo
:
wceq
cbigo
(
cmpt
(
λ x0 .
co
cr
cr
cpm
)
(
λ x0 .
crab
(
λ x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
wral
(
λ x4 .
wbr
(
cfv
(
cv
x4
)
(
cv
x1
)
)
(
co
(
cv
x3
)
(
cfv
(
cv
x4
)
(
cv
x0
)
)
cmul
)
cle
)
(
λ x4 .
cin
(
cdm
(
cv
x1
)
)
(
co
(
cv
x2
)
cpnf
cico
)
)
)
(
λ x3 .
cr
)
)
(
λ x2 .
cr
)
)
(
λ x1 .
co
cr
cr
cpm
)
)
)
(proof)
Theorem
df_blen
:
wceq
cblen
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cif
(
wceq
(
cv
x0
)
cc0
)
c1
(
co
(
cfv
(
co
c2
(
cfv
(
cv
x0
)
cabs
)
clogb
)
cfl
)
c1
caddc
)
)
)
(proof)
Theorem
df_dig
:
wceq
cdig
(
cmpt
(
λ x0 .
cn
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cz
)
(
λ x1 x2 .
co
cc0
cpnf
cico
)
(
λ x1 x2 .
co
(
cfv
(
co
(
co
(
cv
x0
)
(
cneg
(
cv
x1
)
)
cexp
)
(
cv
x2
)
cmul
)
cfl
)
(
cv
x0
)
cmo
)
)
)
(proof)
Theorem
df_setrecs
:
∀ x0 :
ι → ο
.
wceq
(
csetrecs
x0
)
(
cuni
(
cab
(
λ x1 .
∀ x2 .
(
∀ x3 .
wss
(
cv
x3
)
(
cv
x1
)
⟶
wss
(
cv
x3
)
(
cv
x2
)
⟶
wss
(
cfv
(
cv
x3
)
x0
)
(
cv
x2
)
)
⟶
wss
(
cv
x1
)
(
cv
x2
)
)
)
)
(proof)
Theorem
df_pg
:
wceq
cpg
(
csetrecs
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cxp
(
cpw
(
cv
x0
)
)
(
cpw
(
cv
x0
)
)
)
)
)
(proof)
Theorem
df_gte
:
wceq
cge_real
(
ccnv
cle
)
(proof)
Theorem
df_gt
:
wceq
cgt
(
ccnv
clt
)
(proof)
Theorem
df_sinh
:
wceq
csinh
(
cmpt
(
λ x0 .
cc
)
(
λ x0 .
co
(
cfv
(
co
ci
(
cv
x0
)
cmul
)
csin
)
ci
cdiv
)
)
(proof)
Theorem
df_cosh
:
wceq
ccosh
(
cmpt
(
λ x0 .
cc
)
(
λ x0 .
cfv
(
co
ci
(
cv
x0
)
cmul
)
ccos
)
)
(proof)
Theorem
df_tanh
:
wceq
ctanh
(
cmpt
(
λ x0 .
cima
(
ccnv
ccosh
)
(
cdif
cc
(
csn
cc0
)
)
)
(
λ x0 .
co
(
cfv
(
co
ci
(
cv
x0
)
cmul
)
ctan
)
ci
cdiv
)
)
(proof)
Theorem
df_sec
:
wceq
csec
(
cmpt
(
λ x0 .
crab
(
λ x1 .
wne
(
cfv
(
cv
x1
)
ccos
)
cc0
)
(
λ x1 .
cc
)
)
(
λ x0 .
co
c1
(
cfv
(
cv
x0
)
ccos
)
cdiv
)
)
(proof)
Theorem
df_csc
:
wceq
ccsc
(
cmpt
(
λ x0 .
crab
(
λ x1 .
wne
(
cfv
(
cv
x1
)
csin
)
cc0
)
(
λ x1 .
cc
)
)
(
λ x0 .
co
c1
(
cfv
(
cv
x0
)
csin
)
cdiv
)
)
(proof)
Theorem
df_cot
:
wceq
ccot
(
cmpt
(
λ x0 .
crab
(
λ x1 .
wne
(
cfv
(
cv
x1
)
csin
)
cc0
)
(
λ x1 .
cc
)
)
(
λ x0 .
co
(
cfv
(
cv
x0
)
ccos
)
(
cfv
(
cv
x0
)
csin
)
cdiv
)
)
(proof)
Theorem
df_logbALT
:
wceq
clog_
(
cmpt
(
λ x0 .
cdif
cc
(
cpr
cc0
c1
)
)
(
λ x0 .
cmpt
(
λ x1 .
cdif
cc
(
csn
cc0
)
)
(
λ x1 .
co
(
cfv
(
cv
x1
)
clog
)
(
cfv
(
cv
x0
)
clog
)
cdiv
)
)
)
(proof)
Theorem
df_reflexive
:
∀ x0 x1 :
ι → ο
.
wb
(
wreflexive
x0
x1
)
(
wa
(
wss
x1
(
cxp
x0
x0
)
)
(
wral
(
λ x2 .
wbr
(
cv
x2
)
(
cv
x2
)
x1
)
(
λ x2 .
x0
)
)
)
(proof)
Theorem
df_irreflexive
:
∀ x0 x1 :
ι → ο
.
wb
(
wirreflexive
x0
x1
)
(
wa
(
wss
x1
(
cxp
x0
x0
)
)
(
wral
(
λ x2 .
wn
(
wbr
(
cv
x2
)
(
cv
x2
)
x1
)
)
(
λ x2 .
x0
)
)
)
(proof)
Theorem
df_alsi
:
∀ x0 x1 :
ι → ο
.
wb
(
walsi
x0
x1
)
(
wa
(
∀ x2 .
x0
x2
⟶
x1
x2
)
(
wex
x0
)
)
(proof)
Theorem
df_alsc
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ο
.
wb
(
walsc
x0
x1
)
(
wa
(
wral
x0
x1
)
(
wex
(
λ x2 .
wcel
(
cv
x2
)
(
x1
x2
)
)
)
)
(proof)