Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrL4b..
/
2ddd5..
PUKVf..
/
21585..
vout
PrL4b..
/
4d165..
0.10 bars
TMW8o..
/
1c876..
ownership of
79014..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXKK..
/
cf478..
ownership of
178ee..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaA7..
/
a68c7..
ownership of
e2b7c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPo4..
/
65b21..
ownership of
2a0a2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMvf..
/
b33f8..
ownership of
c1f2c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVHs..
/
07e18..
ownership of
f8290..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVp6..
/
9a819..
ownership of
1b666..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPMN..
/
129e2..
ownership of
07ba8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMX42..
/
f700d..
ownership of
3c6f5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMP4e..
/
86613..
ownership of
0dc30..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNY9..
/
e9e42..
ownership of
1ca8a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWbj..
/
3e216..
ownership of
b7576..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPNT..
/
22a4f..
ownership of
01b15..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbqU..
/
9030b..
ownership of
8fe3e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHKp..
/
ae9ad..
ownership of
5ed0a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQH7..
/
61891..
ownership of
5d743..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMH6z..
/
9c22b..
ownership of
bf71e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdch..
/
cb8e7..
ownership of
32752..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVF1..
/
1f7c7..
ownership of
f321c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbc5..
/
39b69..
ownership of
ba614..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbby..
/
61bc1..
ownership of
0c412..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTmg..
/
32b07..
ownership of
11d8e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPK6..
/
c79e5..
ownership of
38226..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaeJ..
/
8fb3b..
ownership of
bef55..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGRR..
/
88397..
ownership of
626e8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbG7..
/
b0d96..
ownership of
b7235..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZHX..
/
ce4a4..
ownership of
ee054..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJe7..
/
d2c37..
ownership of
75f88..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdRE..
/
1e37b..
ownership of
c6e7f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLRT..
/
b3a23..
ownership of
7435c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYDm..
/
16b84..
ownership of
7b93b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFds..
/
5b42d..
ownership of
4ab37..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPZy..
/
76b74..
ownership of
13793..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMU7n..
/
dba6b..
ownership of
38c8d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWdm..
/
d0b6d..
ownership of
665d3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMF8t..
/
857b9..
ownership of
25c77..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUVCn..
/
a4375..
doc published by
PrCmT..
Known
df_mpl__df_ltbag__df_opsr__df_evls__df_evl__df_mhp__df_psd__df_selv__df_algind__df_psr1__df_vr1__df_ply1__df_coe1__df_toply1__df_evls1__df_evl1__df_psmet__df_xmet
:
∀ x0 : ο .
(
wceq
cmpl
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
csb
(
co
(
cv
x1
)
(
cv
x2
)
cmps
)
(
λ x3 .
co
(
cv
x3
)
(
crab
(
λ x4 .
wbr
(
cv
x4
)
(
cfv
(
cv
x2
)
c0g
)
cfsupp
)
(
λ x4 .
cfv
(
cv
x3
)
cbs
)
)
cress
)
)
)
⟶
wceq
cltb
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
copab
(
λ x3 x4 .
wa
(
wss
(
cpr
(
cv
x3
)
(
cv
x4
)
)
(
crab
(
λ x5 .
wcel
(
cima
(
ccnv
(
cv
x5
)
)
cn
)
cfn
)
(
λ x5 .
co
cn0
(
cv
x2
)
cmap
)
)
)
(
wrex
(
λ x5 .
wa
(
wbr
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x5
)
(
cv
x4
)
)
clt
)
(
wral
(
λ x6 .
wbr
(
cv
x5
)
(
cv
x6
)
(
cv
x1
)
⟶
wceq
(
cfv
(
cv
x6
)
(
cv
x3
)
)
(
cfv
(
cv
x6
)
(
cv
x4
)
)
)
(
λ x6 .
cv
x2
)
)
)
(
λ x5 .
cv
x2
)
)
)
)
)
⟶
wceq
copws
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt
(
λ x3 .
cpw
(
cxp
(
cv
x1
)
(
cv
x1
)
)
)
(
λ x3 .
csb
(
co
(
cv
x1
)
(
cv
x2
)
cmps
)
(
λ x4 .
co
(
cv
x4
)
(
cop
(
cfv
cnx
cple
)
(
copab
(
λ x5 x6 .
wa
(
wss
(
cpr
(
cv
x5
)
(
cv
x6
)
)
(
cfv
(
cv
x4
)
cbs
)
)
(
wo
(
wsbc
(
λ x7 .
wrex
(
λ x8 .
wa
(
wbr
(
cfv
(
cv
x8
)
(
cv
x5
)
)
(
cfv
(
cv
x8
)
(
cv
x6
)
)
(
cfv
(
cv
x2
)
cplt
)
)
(
wral
(
λ x9 .
wbr
(
cv
x9
)
(
cv
x8
)
(
co
(
cv
x3
)
(
cv
x1
)
cltb
)
⟶
wceq
(
cfv
(
cv
x9
)
(
cv
x5
)
)
(
cfv
(
cv
x9
)
(
cv
x6
)
)
)
(
λ x9 .
cv
x7
)
)
)
(
λ x8 .
cv
x7
)
)
(
crab
(
λ x7 .
wcel
(
cima
(
ccnv
(
cv
x7
)
)
cn
)
cfn
)
(
λ x7 .
co
cn0
(
cv
x1
)
cmap
)
)
)
(
wceq
(
cv
x5
)
(
cv
x6
)
)
)
)
)
)
csts
)
)
)
)
⟶
wceq
ces
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
ccrg
)
(
λ x1 x2 .
csb
(
cfv
(
cv
x2
)
cbs
)
(
λ x3 .
cmpt
(
λ x4 .
cfv
(
cv
x2
)
csubrg
)
(
λ x4 .
csb
(
co
(
cv
x1
)
(
co
(
cv
x2
)
(
cv
x4
)
cress
)
cmpl
)
(
λ x5 .
crio
(
λ x6 .
wa
(
wceq
(
ccom
(
cv
x6
)
(
cfv
(
cv
x5
)
cascl
)
)
(
cmpt
(
λ x7 .
cv
x4
)
(
λ x7 .
cxp
(
co
(
cv
x3
)
(
cv
x1
)
cmap
)
(
csn
(
cv
x7
)
)
)
)
)
(
wceq
(
ccom
(
cv
x6
)
(
co
(
cv
x1
)
(
co
(
cv
x2
)
(
cv
x4
)
cress
)
cmvr
)
)
(
cmpt
(
λ x7 .
cv
x1
)
(
λ x7 .
cmpt
(
λ x8 .
co
(
cv
x3
)
(
cv
x1
)
cmap
)
(
λ x8 .
cfv
(
cv
x7
)
(
cv
x8
)
)
)
)
)
)
(
λ x6 .
co
(
cv
x5
)
(
co
(
cv
x2
)
(
co
(
cv
x3
)
(
cv
x1
)
cmap
)
cpws
)
crh
)
)
)
)
)
)
⟶
wceq
cevl
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cfv
(
cfv
(
cv
x2
)
cbs
)
(
co
(
cv
x1
)
(
cv
x2
)
ces
)
)
)
⟶
wceq
cmhp
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt
(
λ x3 .
cn0
)
(
λ x3 .
crab
(
λ x4 .
wss
(
co
(
cv
x4
)
(
cfv
(
cv
x2
)
c0g
)
csupp
)
(
crab
(
λ x5 .
wceq
(
csu
cn0
(
λ x6 .
cfv
(
cv
x6
)
(
cv
x5
)
)
)
(
cv
x3
)
)
(
λ x5 .
crab
(
λ x6 .
wcel
(
cima
(
ccnv
(
cv
x6
)
)
cn
)
cfn
)
(
λ x6 .
co
cn0
(
cv
x1
)
cmap
)
)
)
)
(
λ x4 .
cfv
(
co
(
cv
x1
)
(
cv
x2
)
cmpl
)
cbs
)
)
)
)
⟶
wceq
cpsd
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt
(
λ x3 .
cv
x1
)
(
λ x3 .
cmpt
(
λ x4 .
cfv
(
co
(
cv
x1
)
(
cv
x2
)
cmps
)
cbs
)
(
λ x4 .
cmpt
(
λ x5 .
crab
(
λ x6 .
wcel
(
cima
(
ccnv
(
cv
x6
)
)
cn
)
cfn
)
(
λ x6 .
co
cn0
(
cv
x1
)
cmap
)
)
(
λ x5 .
co
(
co
(
cfv
(
cv
x3
)
(
cv
x5
)
)
c1
caddc
)
(
cfv
(
co
(
cv
x5
)
(
cmpt
(
λ x6 .
cv
x1
)
(
λ x6 .
cif
(
wceq
(
cv
x6
)
(
cv
x3
)
)
c1
cc0
)
)
(
cof
caddc
)
)
(
cv
x4
)
)
(
cfv
(
cv
x2
)
cmg
)
)
)
)
)
)
⟶
wceq
cslv
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt
(
λ x3 .
cpw
(
cv
x1
)
)
(
λ x3 .
cmpt
(
λ x4 .
co
(
cv
x1
)
(
cv
x2
)
cmpl
)
(
λ x4 .
csb
(
co
(
cdif
(
cv
x1
)
(
cv
x3
)
)
(
cv
x2
)
cmpl
)
(
λ x5 .
csb
(
cmpt
(
λ x6 .
cfv
(
cv
x5
)
csca
)
(
λ x6 .
co
(
cv
x6
)
(
cfv
(
cv
x5
)
cur
)
(
cfv
(
cv
x5
)
cvsca
)
)
)
(
λ x6 .
cfv
(
cmpt
(
λ x7 .
cv
x1
)
(
λ x7 .
cif
(
wcel
(
cv
x7
)
(
cv
x3
)
)
(
cfv
(
cv
x7
)
(
co
(
cv
x3
)
(
co
(
cdif
(
cv
x1
)
(
cv
x3
)
)
(
cv
x2
)
cmpl
)
cmvr
)
)
(
ccom
(
cv
x6
)
(
cfv
(
cv
x7
)
(
co
(
cdif
(
cv
x1
)
(
cv
x3
)
)
(
cv
x2
)
cmvr
)
)
)
)
)
(
cfv
(
ccom
(
cv
x6
)
(
cv
x4
)
)
(
cfv
(
co
(
cv
x6
)
(
cv
x2
)
cimas
)
(
co
(
cv
x1
)
(
cv
x5
)
ces
)
)
)
)
)
)
)
)
)
⟶
wceq
cai
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x1 x2 .
crab
(
λ x3 .
wfun
(
ccnv
(
cmpt
(
λ x4 .
cfv
(
co
(
cv
x3
)
(
co
(
cv
x1
)
(
cv
x2
)
cress
)
cmpl
)
cbs
)
(
λ x4 .
cfv
(
cres
cid
(
cv
x3
)
)
(
cfv
(
cv
x4
)
(
cfv
(
cv
x2
)
(
co
(
cv
x3
)
(
cv
x1
)
ces
)
)
)
)
)
)
)
(
λ x3 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
)
)
⟶
wceq
cps1
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cfv
c0
(
co
c1o
(
cv
x1
)
copws
)
)
)
⟶
wceq
cv1
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cfv
c0
(
co
c1o
(
cv
x1
)
cmvr
)
)
)
⟶
wceq
cpl1
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
co
(
cfv
(
cv
x1
)
cps1
)
(
cfv
(
co
c1o
(
cv
x1
)
cmpl
)
cbs
)
cress
)
)
⟶
wceq
cco1
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cn0
)
(
λ x2 .
cfv
(
cxp
c1o
(
csn
(
cv
x2
)
)
)
(
cv
x1
)
)
)
)
⟶
wceq
ctp1
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
co
cn0
c1o
cmap
)
(
λ x2 .
cfv
(
cfv
c0
(
cv
x2
)
)
(
cv
x1
)
)
)
)
⟶
wceq
ces1
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x1 x2 .
csb
(
cfv
(
cv
x1
)
cbs
)
(
λ x3 .
ccom
(
cmpt
(
λ x4 .
co
(
cv
x3
)
(
co
(
cv
x3
)
c1o
cmap
)
cmap
)
(
λ x4 .
ccom
(
cv
x4
)
(
cmpt
(
λ x5 .
cv
x3
)
(
λ x5 .
cxp
c1o
(
csn
(
cv
x5
)
)
)
)
)
)
(
cfv
(
cv
x2
)
(
co
c1o
(
cv
x1
)
ces
)
)
)
)
)
⟶
wceq
ce1
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
csb
(
cfv
(
cv
x1
)
cbs
)
(
λ x2 .
ccom
(
cmpt
(
λ x3 .
co
(
cv
x2
)
(
co
(
cv
x2
)
c1o
cmap
)
cmap
)
(
λ x3 .
ccom
(
cv
x3
)
(
cmpt
(
λ x4 .
cv
x2
)
(
λ x4 .
cxp
c1o
(
csn
(
cv
x4
)
)
)
)
)
)
(
co
c1o
(
cv
x1
)
cevl
)
)
)
)
⟶
wceq
cpsmet
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wa
(
wceq
(
co
(
cv
x3
)
(
cv
x3
)
(
cv
x2
)
)
cc0
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wbr
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
(
co
(
co
(
cv
x5
)
(
cv
x3
)
(
cv
x2
)
)
(
co
(
cv
x5
)
(
cv
x4
)
(
cv
x2
)
)
cxad
)
cle
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cv
x1
)
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
co
cxr
(
cxp
(
cv
x1
)
(
cv
x1
)
)
cmap
)
)
)
⟶
wceq
cxmt
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wa
(
wb
(
wceq
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
cc0
)
(
wceq
(
cv
x3
)
(
cv
x4
)
)
)
(
wral
(
λ x5 .
wbr
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
(
co
(
co
(
cv
x5
)
(
cv
x3
)
(
cv
x2
)
)
(
co
(
cv
x5
)
(
cv
x4
)
(
cv
x2
)
)
cxad
)
cle
)
(
λ x5 .
cv
x1
)
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
co
cxr
(
cxp
(
cv
x1
)
(
cv
x1
)
)
cmap
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_mpl
:
wceq
cmpl
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
csb
(
co
(
cv
x0
)
(
cv
x1
)
cmps
)
(
λ x2 .
co
(
cv
x2
)
(
crab
(
λ x3 .
wbr
(
cv
x3
)
(
cfv
(
cv
x1
)
c0g
)
cfsupp
)
(
λ x3 .
cfv
(
cv
x2
)
cbs
)
)
cress
)
)
)
(proof)
Theorem
df_ltbag
:
wceq
cltb
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
copab
(
λ x2 x3 .
wa
(
wss
(
cpr
(
cv
x2
)
(
cv
x3
)
)
(
crab
(
λ x4 .
wcel
(
cima
(
ccnv
(
cv
x4
)
)
cn
)
cfn
)
(
λ x4 .
co
cn0
(
cv
x1
)
cmap
)
)
)
(
wrex
(
λ x4 .
wa
(
wbr
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x3
)
)
clt
)
(
wral
(
λ x5 .
wbr
(
cv
x4
)
(
cv
x5
)
(
cv
x0
)
⟶
wceq
(
cfv
(
cv
x5
)
(
cv
x2
)
)
(
cfv
(
cv
x5
)
(
cv
x3
)
)
)
(
λ x5 .
cv
x1
)
)
)
(
λ x4 .
cv
x1
)
)
)
)
)
(proof)
Theorem
df_opsr
:
wceq
copws
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt
(
λ x2 .
cpw
(
cxp
(
cv
x0
)
(
cv
x0
)
)
)
(
λ x2 .
csb
(
co
(
cv
x0
)
(
cv
x1
)
cmps
)
(
λ x3 .
co
(
cv
x3
)
(
cop
(
cfv
cnx
cple
)
(
copab
(
λ x4 x5 .
wa
(
wss
(
cpr
(
cv
x4
)
(
cv
x5
)
)
(
cfv
(
cv
x3
)
cbs
)
)
(
wo
(
wsbc
(
λ x6 .
wrex
(
λ x7 .
wa
(
wbr
(
cfv
(
cv
x7
)
(
cv
x4
)
)
(
cfv
(
cv
x7
)
(
cv
x5
)
)
(
cfv
(
cv
x1
)
cplt
)
)
(
wral
(
λ x8 .
wbr
(
cv
x8
)
(
cv
x7
)
(
co
(
cv
x2
)
(
cv
x0
)
cltb
)
⟶
wceq
(
cfv
(
cv
x8
)
(
cv
x4
)
)
(
cfv
(
cv
x8
)
(
cv
x5
)
)
)
(
λ x8 .
cv
x6
)
)
)
(
λ x7 .
cv
x6
)
)
(
crab
(
λ x6 .
wcel
(
cima
(
ccnv
(
cv
x6
)
)
cn
)
cfn
)
(
λ x6 .
co
cn0
(
cv
x0
)
cmap
)
)
)
(
wceq
(
cv
x4
)
(
cv
x5
)
)
)
)
)
)
csts
)
)
)
)
(proof)
Theorem
df_evls
:
wceq
ces
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
ccrg
)
(
λ x0 x1 .
csb
(
cfv
(
cv
x1
)
cbs
)
(
λ x2 .
cmpt
(
λ x3 .
cfv
(
cv
x1
)
csubrg
)
(
λ x3 .
csb
(
co
(
cv
x0
)
(
co
(
cv
x1
)
(
cv
x3
)
cress
)
cmpl
)
(
λ x4 .
crio
(
λ x5 .
wa
(
wceq
(
ccom
(
cv
x5
)
(
cfv
(
cv
x4
)
cascl
)
)
(
cmpt
(
λ x6 .
cv
x3
)
(
λ x6 .
cxp
(
co
(
cv
x2
)
(
cv
x0
)
cmap
)
(
csn
(
cv
x6
)
)
)
)
)
(
wceq
(
ccom
(
cv
x5
)
(
co
(
cv
x0
)
(
co
(
cv
x1
)
(
cv
x3
)
cress
)
cmvr
)
)
(
cmpt
(
λ x6 .
cv
x0
)
(
λ x6 .
cmpt
(
λ x7 .
co
(
cv
x2
)
(
cv
x0
)
cmap
)
(
λ x7 .
cfv
(
cv
x6
)
(
cv
x7
)
)
)
)
)
)
(
λ x5 .
co
(
cv
x4
)
(
co
(
cv
x1
)
(
co
(
cv
x2
)
(
cv
x0
)
cmap
)
cpws
)
crh
)
)
)
)
)
)
(proof)
Theorem
df_evl
:
wceq
cevl
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cfv
(
cfv
(
cv
x1
)
cbs
)
(
co
(
cv
x0
)
(
cv
x1
)
ces
)
)
)
(proof)
Theorem
df_mhp
:
wceq
cmhp
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt
(
λ x2 .
cn0
)
(
λ x2 .
crab
(
λ x3 .
wss
(
co
(
cv
x3
)
(
cfv
(
cv
x1
)
c0g
)
csupp
)
(
crab
(
λ x4 .
wceq
(
csu
cn0
(
λ x5 .
cfv
(
cv
x5
)
(
cv
x4
)
)
)
(
cv
x2
)
)
(
λ x4 .
crab
(
λ x5 .
wcel
(
cima
(
ccnv
(
cv
x5
)
)
cn
)
cfn
)
(
λ x5 .
co
cn0
(
cv
x0
)
cmap
)
)
)
)
(
λ x3 .
cfv
(
co
(
cv
x0
)
(
cv
x1
)
cmpl
)
cbs
)
)
)
)
(proof)
Theorem
df_psd
:
wceq
cpsd
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt
(
λ x2 .
cv
x0
)
(
λ x2 .
cmpt
(
λ x3 .
cfv
(
co
(
cv
x0
)
(
cv
x1
)
cmps
)
cbs
)
(
λ x3 .
cmpt
(
λ x4 .
crab
(
λ x5 .
wcel
(
cima
(
ccnv
(
cv
x5
)
)
cn
)
cfn
)
(
λ x5 .
co
cn0
(
cv
x0
)
cmap
)
)
(
λ x4 .
co
(
co
(
cfv
(
cv
x2
)
(
cv
x4
)
)
c1
caddc
)
(
cfv
(
co
(
cv
x4
)
(
cmpt
(
λ x5 .
cv
x0
)
(
λ x5 .
cif
(
wceq
(
cv
x5
)
(
cv
x2
)
)
c1
cc0
)
)
(
cof
caddc
)
)
(
cv
x3
)
)
(
cfv
(
cv
x1
)
cmg
)
)
)
)
)
)
(proof)
Theorem
df_selv
:
wceq
cslv
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt
(
λ x2 .
cpw
(
cv
x0
)
)
(
λ x2 .
cmpt
(
λ x3 .
co
(
cv
x0
)
(
cv
x1
)
cmpl
)
(
λ x3 .
csb
(
co
(
cdif
(
cv
x0
)
(
cv
x2
)
)
(
cv
x1
)
cmpl
)
(
λ x4 .
csb
(
cmpt
(
λ x5 .
cfv
(
cv
x4
)
csca
)
(
λ x5 .
co
(
cv
x5
)
(
cfv
(
cv
x4
)
cur
)
(
cfv
(
cv
x4
)
cvsca
)
)
)
(
λ x5 .
cfv
(
cmpt
(
λ x6 .
cv
x0
)
(
λ x6 .
cif
(
wcel
(
cv
x6
)
(
cv
x2
)
)
(
cfv
(
cv
x6
)
(
co
(
cv
x2
)
(
co
(
cdif
(
cv
x0
)
(
cv
x2
)
)
(
cv
x1
)
cmpl
)
cmvr
)
)
(
ccom
(
cv
x5
)
(
cfv
(
cv
x6
)
(
co
(
cdif
(
cv
x0
)
(
cv
x2
)
)
(
cv
x1
)
cmvr
)
)
)
)
)
(
cfv
(
ccom
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
co
(
cv
x5
)
(
cv
x1
)
cimas
)
(
co
(
cv
x0
)
(
cv
x4
)
ces
)
)
)
)
)
)
)
)
)
(proof)
Theorem
df_algind
:
wceq
cai
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x0 x1 .
crab
(
λ x2 .
wfun
(
ccnv
(
cmpt
(
λ x3 .
cfv
(
co
(
cv
x2
)
(
co
(
cv
x0
)
(
cv
x1
)
cress
)
cmpl
)
cbs
)
(
λ x3 .
cfv
(
cres
cid
(
cv
x2
)
)
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
(
co
(
cv
x2
)
(
cv
x0
)
ces
)
)
)
)
)
)
)
(
λ x2 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
)
)
(proof)
Theorem
df_psr1
:
wceq
cps1
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cfv
c0
(
co
c1o
(
cv
x0
)
copws
)
)
)
(proof)
Theorem
df_vr1
:
wceq
cv1
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cfv
c0
(
co
c1o
(
cv
x0
)
cmvr
)
)
)
(proof)
Theorem
df_ply1
:
wceq
cpl1
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
co
(
cfv
(
cv
x0
)
cps1
)
(
cfv
(
co
c1o
(
cv
x0
)
cmpl
)
cbs
)
cress
)
)
(proof)
Theorem
df_coe1
:
wceq
cco1
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cn0
)
(
λ x1 .
cfv
(
cxp
c1o
(
csn
(
cv
x1
)
)
)
(
cv
x0
)
)
)
)
(proof)
Theorem
df_toply1
:
wceq
ctp1
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
co
cn0
c1o
cmap
)
(
λ x1 .
cfv
(
cfv
c0
(
cv
x1
)
)
(
cv
x0
)
)
)
)
(proof)
Theorem
df_evls1
:
wceq
ces1
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x0 x1 .
csb
(
cfv
(
cv
x0
)
cbs
)
(
λ x2 .
ccom
(
cmpt
(
λ x3 .
co
(
cv
x2
)
(
co
(
cv
x2
)
c1o
cmap
)
cmap
)
(
λ x3 .
ccom
(
cv
x3
)
(
cmpt
(
λ x4 .
cv
x2
)
(
λ x4 .
cxp
c1o
(
csn
(
cv
x4
)
)
)
)
)
)
(
cfv
(
cv
x1
)
(
co
c1o
(
cv
x0
)
ces
)
)
)
)
)
(proof)
Theorem
df_evl1
:
wceq
ce1
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
csb
(
cfv
(
cv
x0
)
cbs
)
(
λ x1 .
ccom
(
cmpt
(
λ x2 .
co
(
cv
x1
)
(
co
(
cv
x1
)
c1o
cmap
)
cmap
)
(
λ x2 .
ccom
(
cv
x2
)
(
cmpt
(
λ x3 .
cv
x1
)
(
λ x3 .
cxp
c1o
(
csn
(
cv
x3
)
)
)
)
)
)
(
co
c1o
(
cv
x0
)
cevl
)
)
)
)
(proof)
Theorem
df_psmet
:
wceq
cpsmet
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wa
(
wceq
(
co
(
cv
x2
)
(
cv
x2
)
(
cv
x1
)
)
cc0
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wbr
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x1
)
)
(
co
(
co
(
cv
x4
)
(
cv
x2
)
(
cv
x1
)
)
(
co
(
cv
x4
)
(
cv
x3
)
(
cv
x1
)
)
cxad
)
cle
)
(
λ x4 .
cv
x0
)
)
(
λ x3 .
cv
x0
)
)
)
(
λ x2 .
cv
x0
)
)
(
λ x1 .
co
cxr
(
cxp
(
cv
x0
)
(
cv
x0
)
)
cmap
)
)
)
(proof)
Theorem
df_xmet
:
wceq
cxmt
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wa
(
wb
(
wceq
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x1
)
)
cc0
)
(
wceq
(
cv
x2
)
(
cv
x3
)
)
)
(
wral
(
λ x4 .
wbr
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x1
)
)
(
co
(
co
(
cv
x4
)
(
cv
x2
)
(
cv
x1
)
)
(
co
(
cv
x4
)
(
cv
x3
)
(
cv
x1
)
)
cxad
)
cle
)
(
λ x4 .
cv
x0
)
)
)
(
λ x3 .
cv
x0
)
)
(
λ x2 .
cv
x0
)
)
(
λ x1 .
co
cxr
(
cxp
(
cv
x0
)
(
cv
x0
)
)
cmap
)
)
)
(proof)