Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrJAV../b3925..
PUZG5../eab79..
vout
PrJAV../6b49c.. 5.20 bars
TMVB9../cb09e.. ownership of 6db0d.. as prop with payaddr Pr6Pc.. rightscost 0.00 controlledby Pr6Pc.. upto 0
TMVA1../23b1d.. ownership of 892a2.. as prop with payaddr Pr6Pc.. rightscost 0.00 controlledby Pr6Pc.. upto 0
TMWcs../d11e5.. ownership of aa221.. as prop with payaddr Pr6Pc.. rightscost 0.00 controlledby Pr6Pc.. upto 0
TMQZo../e09b4.. ownership of eece9.. as prop with payaddr Pr6Pc.. rightscost 0.00 controlledby Pr6Pc.. upto 0
TMFSi../78c61.. ownership of d5321.. as obj with payaddr Pr6Pc.. rightscost 0.00 controlledby Pr6Pc.. upto 0
TMT3n../f2b36.. ownership of b54b2.. as obj with payaddr Pr6Pc.. rightscost 0.00 controlledby Pr6Pc.. upto 0
PUYRP../43e67.. doc published by Pr6Pc..
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param omegaomega : ι
Param setminussetminus : ιιι
Param ordsuccordsucc : ιι
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Param add_natadd_nat : ιιι
Param mul_natmul_nat : ιιι
Definition equiv_nat_mod := λ x0 x1 x2 . and (and (and (x0omega) (x1omega)) (x2setminus omega 1)) (or (∀ x3 : ο . (∀ x4 . and (x4omega) (add_nat x0 (mul_nat x4 x2) = x1)x3)x3) (∀ x3 : ο . (∀ x4 . and (x4omega) (add_nat x1 (mul_nat x4 x2) = x0)x3)x3))
Param int_alt1int : ι
Param mul_SNomul_SNo : ιιι
Definition divides_int_alt1divides_int := λ x0 x1 . and (and (x0int_alt1) (x1int_alt1)) (∀ x2 : ο . (∀ x3 . and (x3int_alt1) (mul_SNo x0 x3 = x1)x2)x2)
Param add_SNoadd_SNo : ιιι
Param minus_SNominus_SNo : ιι
Definition 6ccc6.. := λ x0 x1 x2 . and (and (and (x0int_alt1) (x1int_alt1)) (x2setminus omega 1)) (divides_int_alt1 x2 (add_SNo x0 (minus_SNo x1)))
Param SNoSNo : ιο
Known and4Iand4I : ∀ x0 x1 x2 x3 : ο . x0x1x2x3and (and (and x0 x1) x2) x3
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known c3d99..Subq_omega_int : omegaint_alt1
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known a0aa5..int_add_SNo : ∀ x0 . x0int_alt1∀ x1 . x1int_alt1add_SNo x0 x1int_alt1
Known daaad..int_minus_SNo : ∀ x0 . x0int_alt1minus_SNo x0int_alt1
Known mul_nat_mul_SNomul_nat_mul_SNo : ∀ x0 . x0omega∀ x1 . x1omegamul_nat x0 x1 = mul_SNo x0 x1
Known add_nat_add_SNoadd_nat_add_SNo : ∀ x0 . x0omega∀ x1 . x1omegaadd_nat x0 x1 = add_SNo x0 x1
Known mul_SNo_In_omegamul_SNo_In_omega : ∀ x0 . x0omega∀ x1 . x1omegamul_SNo x0 x1omega
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known 1b4d5..int_minus_SNo_omega : ∀ x0 . x0omegaminus_SNo x0int_alt1
Known mul_SNo_minus_distrRmul_SNo_minus_distrR : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 (minus_SNo x1) = minus_SNo (mul_SNo x0 x1)
Known mul_SNo_commul_SNo_com : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_SNo x1 x0
Known add_SNo_cancel_Radd_SNo_cancel_R : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 x1 = add_SNo x2 x1x0 = x2
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known add_SNo_minus_R2'add_SNo_minus_R2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (add_SNo x0 (minus_SNo x1)) x1 = x0
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Known add_SNo_minus_R2add_SNo_minus_R2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (add_SNo x0 x1) (minus_SNo x1) = x0
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Known omega_SNoomega_SNo : ∀ x0 . x0omegaSNo x0
Known setminusE1setminusE1 : ∀ x0 x1 x2 . x2setminus x0 x1x2x0
Theorem aa221.. : ∀ x0 x1 x2 . equiv_nat_mod x0 x1 x26ccc6.. x0 x1 x2 (proof)
Known a3283..int_SNo_cases : ∀ x0 : ι → ο . (∀ x1 . x1omegax0 x1)(∀ x1 . x1omegax0 (minus_SNo x1))∀ x1 . x1int_alt1x0 x1
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known minus_SNo_involminus_SNo_invol : ∀ x0 . SNo x0minus_SNo (minus_SNo x0) = x0
Known mul_SNo_minus_distrLmul_SNo_minus_distrL : ∀ x0 x1 . SNo x0SNo x1mul_SNo (minus_SNo x0) x1 = minus_SNo (mul_SNo x0 x1)
Known minus_add_SNo_distrminus_add_SNo_distr : ∀ x0 x1 . SNo x0SNo x1minus_SNo (add_SNo x0 x1) = add_SNo (minus_SNo x0) (minus_SNo x1)
Known add_SNo_minus_SNo_prop2add_SNo_minus_SNo_prop2 : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 (add_SNo (minus_SNo x0) x1) = x1
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Known 0c7a0.. : ∀ x0 . x0int_alt1SNo x0
Theorem 6db0d.. : ∀ x0 . x0omega∀ x1 . x1omega∀ x2 . 6ccc6.. x0 x1 x2equiv_nat_mod x0 x1 x2 (proof)