Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCit..
/
de9a3..
PUhJM..
/
f97c5..
vout
PrCit..
/
ac2a7..
3.98 bars
TMdJK..
/
b9732..
ownership of
86f86..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMRGJ..
/
5d6ca..
ownership of
fb3d0..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMXpp..
/
7a383..
ownership of
2b310..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMGN8..
/
ea512..
ownership of
fd1aa..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMZ2m..
/
0c13a..
ownership of
52ae1..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMKgx..
/
e6044..
ownership of
a7eeb..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMKTE..
/
aaa5c..
ownership of
442f5..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMHcC..
/
05112..
ownership of
b099a..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMJFy..
/
1bc89..
ownership of
63ef9..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMSEn..
/
a9eae..
ownership of
407f4..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMWVf..
/
5aedf..
ownership of
0831e..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMW6v..
/
05d50..
ownership of
2e872..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMUuQ..
/
37699..
ownership of
16482..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMcyu..
/
bcc79..
ownership of
9a1a9..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
PUdSd..
/
b2d12..
doc published by
Pr4zB..
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Param
equip
equip
:
ι
→
ι
→
ο
Known
2c48a..
atleastp_antisym_equip
:
∀ x0 x1 .
atleastp
x0
x1
⟶
atleastp
x1
x0
⟶
equip
x0
x1
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Param
nat_p
nat_p
:
ι
→
ο
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
nat_2
nat_2
:
nat_p
2
Known
nat_1
nat_1
:
nat_p
1
Known
nat_0
nat_0
:
nat_p
0
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Theorem
008c0..
:
add_nat
u3
u3
=
u6
(proof)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Param
setsum
setsum
:
ι
→
ι
→
ι
Param
binunion
binunion
:
ι
→
ι
→
ι
Known
1fe14..
:
∀ x0 x1 x2 x3 .
atleastp
x0
x2
⟶
atleastp
x1
x3
⟶
(
∀ x4 .
x4
∈
x2
⟶
nIn
x4
x3
)
⟶
atleastp
(
setsum
x0
x1
)
(
binunion
x2
x3
)
Param
setminus
setminus
:
ι
→
ι
→
ι
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Theorem
16482..
:
∀ x0 x1 .
binunion
x0
x1
=
binunion
x0
(
setminus
x1
x0
)
(proof)
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Definition
u7
:=
ordsucc
u6
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Known
385ef..
:
∀ x0 x1 x2 x3 .
atleastp
x0
x2
⟶
atleastp
x1
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
nIn
x4
x1
)
⟶
atleastp
(
binunion
x0
x1
)
(
setsum
x2
x3
)
Known
48e0f..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
or
(
atleastp
x1
x0
)
(
atleastp
(
ordsucc
x0
)
x1
)
Known
4fb58..
Pigeonhole_not_atleastp_ordsucc
:
∀ x0 .
nat_p
x0
⟶
not
(
atleastp
(
ordsucc
x0
)
x0
)
Known
nat_5
nat_5
:
nat_p
5
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
c88e0..
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
nat_p
x1
⟶
equip
x0
x2
⟶
equip
x1
x3
⟶
equip
(
add_nat
x0
x1
)
(
setsum
x2
x3
)
Known
nat_3
nat_3
:
nat_p
3
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Known
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Known
binintersectE1
binintersectE1
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
x2
∈
x0
Known
binunion_com
binunion_com
:
∀ x0 x1 .
binunion
x0
x1
=
binunion
x1
x0
Known
binintersect_com
binintersect_com
:
∀ x0 x1 .
binintersect
x0
x1
=
binintersect
x1
x0
Known
a8a92..
:
∀ x0 x1 .
x0
=
binunion
(
setminus
x0
x1
)
(
binintersect
x0
x1
)
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
bd216..
:
add_nat
u5
u2
=
u7
Theorem
0831e..
:
∀ x0 x1 .
atleastp
u3
(
binintersect
x0
x1
)
⟶
atleastp
x0
u5
⟶
atleastp
x1
u5
⟶
atleastp
(
binunion
x0
x1
)
u7
(proof)
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Theorem
63ef9..
:
add_nat
u7
u2
=
u9
(proof)
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Definition
u12
:=
ordsucc
u11
Definition
u13
:=
ordsucc
u12
Definition
u14
:=
ordsucc
u13
Definition
u15
:=
ordsucc
u14
Definition
u16
:=
ordsucc
u15
Definition
u17
:=
ordsucc
u16
Known
nat_7
nat_7
:
nat_p
7
Known
nat_6
nat_6
:
nat_p
6
Known
nat_4
nat_4
:
nat_p
4
Theorem
442f5..
:
add_nat
u9
u8
=
u17
(proof)
Param
Sing
Sing
:
ι
→
ι
Known
7f437..
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
atleastp
x0
(
ordsucc
x1
)
⟶
atleastp
(
setminus
x0
(
Sing
x2
)
)
x1
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
DirGraphOutNeighbors
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
λ x2 .
{x3 ∈
x0
|
and
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
(
x1
x2
x3
)
}
Known
7fc90..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
∀ x4 .
x4
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x1
x3
x4
)
Definition
u18
:=
ordsucc
u17
Known
b4538..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
equip
(
DirGraphOutNeighbors
u18
x0
x1
)
u5
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
binunion_Subq_min
binunion_Subq_min
:
∀ x0 x1 x2 .
x0
⊆
x2
⟶
x1
⊆
x2
⟶
binunion
x0
x1
⊆
x2
Known
Sep_Subq
Sep_Subq
:
∀ x0 .
∀ x1 :
ι → ο
.
Sep
x0
x1
⊆
x0
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
561b1..
:
add_nat
u5
u1
=
u6
Known
04353..
:
∀ x0 x1 .
x1
∈
x0
⟶
atleastp
u1
x0
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
binintersectI
binintersectI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
x1
⟶
x2
∈
binintersect
x0
x1
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Known
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Theorem
52ae1..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
u18
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
x0
x1
x2
)
⟶
atleastp
u1
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x1
)
(
DirGraphOutNeighbors
u18
x0
x2
)
)
(proof)
Param
UPair
UPair
:
ι
→
ι
→
ι
Definition
TwoRamseyProp
TwoRamseyProp
:=
λ x0 x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 x5 .
x3
x4
x5
⟶
x3
x5
x4
)
⟶
or
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
equip
x0
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
x3
x6
x7
)
)
⟶
x4
)
⟶
x4
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
equip
x1
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x3
x6
x7
)
)
)
⟶
x4
)
⟶
x4
)
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
setminus_Subq
setminus_Subq
:
∀ x0 x1 .
setminus
x0
x1
⊆
x0
Known
f3bb6..
:
add_nat
4
2
=
6
Known
ada03..
:
∀ x0 x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
atleastp
u2
x0
Known
UPairI1
UPairI1
:
∀ x0 x1 .
x0
∈
UPair
x0
x1
Known
UPairI2
UPairI2
:
∀ x0 x1 .
x1
∈
UPair
x0
x1
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
UPairE
UPairE
:
∀ x0 x1 x2 .
x0
∈
UPair
x1
x2
⟶
or
(
x0
=
x1
)
(
x0
=
x2
)
Known
46dcf..
:
∀ x0 x1 x2 x3 .
atleastp
x2
x3
⟶
TwoRamseyProp
x0
x1
x2
⟶
TwoRamseyProp
x0
x1
x3
Known
TwoRamseyProp_3_4_9
TwoRamseyProp_3_4_9
:
TwoRamseyProp
3
4
9
Known
nat_8
nat_8
:
nat_p
8
Known
nat_17
nat_17
:
nat_p
17
Known
80238..
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
=
binunion
x0
(
setminus
x1
x0
)
Known
c558f..
:
∀ x0 x1 x2 x3 .
atleastp
x0
x2
⟶
atleastp
x1
x3
⟶
atleastp
(
binunion
x0
x1
)
(
setsum
x2
x3
)
Known
nat_9
nat_9
:
nat_p
9
Known
b3e89..
:
∀ x0 x1 .
atleastp
(
UPair
x0
x1
)
u2
Theorem
2b310..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
u18
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
x0
x1
x2
)
⟶
atleastp
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x1
)
(
DirGraphOutNeighbors
u18
x0
x2
)
)
u2
(proof)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
86f86..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
u18
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
x0
x1
x2
)
⟶
or
(
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x1
)
(
DirGraphOutNeighbors
u18
x0
x2
)
)
u1
)
(
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x1
)
(
DirGraphOutNeighbors
u18
x0
x2
)
)
u2
)
(proof)