Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCit../de9a3..
PUhJM../f97c5..
vout
PrCit../ac2a7.. 3.98 bars
TMdJK../b9732.. ownership of 86f86.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMRGJ../5d6ca.. ownership of fb3d0.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMXpp../7a383.. ownership of 2b310.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMGN8../ea512.. ownership of fd1aa.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZ2m../0c13a.. ownership of 52ae1.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMKgx../e6044.. ownership of a7eeb.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMKTE../aaa5c.. ownership of 442f5.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHcC../05112.. ownership of b099a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJFy../1bc89.. ownership of 63ef9.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMSEn../a9eae.. ownership of 407f4.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMWVf../5aedf.. ownership of 0831e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMW6v../05d50.. ownership of 2e872.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMUuQ../37699.. ownership of 16482.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMcyu../bcc79.. ownership of 9a1a9.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUdSd../b2d12.. doc published by Pr4zB..
Param atleastpatleastp : ιιο
Param equipequip : ιιο
Known 2c48a..atleastp_antisym_equip : ∀ x0 x1 . atleastp x0 x1atleastp x1 x0equip x0 x1
Param add_natadd_nat : ιιι
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition u4 := ordsucc u3
Definition u5 := ordsucc u4
Definition u6 := ordsucc u5
Param nat_pnat_p : ιο
Known add_nat_SRadd_nat_SR : ∀ x0 x1 . nat_p x1add_nat x0 (ordsucc x1) = ordsucc (add_nat x0 x1)
Known nat_2nat_2 : nat_p 2
Known nat_1nat_1 : nat_p 1
Known nat_0nat_0 : nat_p 0
Known add_nat_0Radd_nat_0R : ∀ x0 . add_nat x0 0 = x0
Theorem 008c0.. : add_nat u3 u3 = u6 (proof)
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Param setsumsetsum : ιιι
Param binunionbinunion : ιιι
Known 1fe14.. : ∀ x0 x1 x2 x3 . atleastp x0 x2atleastp x1 x3(∀ x4 . x4x2nIn x4 x3)atleastp (setsum x0 x1) (binunion x2 x3)
Param setminussetminus : ιιι
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known FalseEFalseE : False∀ x0 : ο . x0
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Known setminusE1setminusE1 : ∀ x0 x1 x2 . x2setminus x0 x1x2x0
Theorem 16482.. : ∀ x0 x1 . binunion x0 x1 = binunion x0 (setminus x1 x0) (proof)
Param binintersectbinintersect : ιιι
Definition u7 := ordsucc u6
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Known 385ef.. : ∀ x0 x1 x2 x3 . atleastp x0 x2atleastp x1 x3(∀ x4 . x4x0nIn x4 x1)atleastp (binunion x0 x1) (setsum x2 x3)
Known 48e0f.. : ∀ x0 . nat_p x0∀ x1 . or (atleastp x1 x0) (atleastp (ordsucc x0) x1)
Known 4fb58..Pigeonhole_not_atleastp_ordsucc : ∀ x0 . nat_p x0not (atleastp (ordsucc x0) x0)
Known nat_5nat_5 : nat_p 5
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known c88e0.. : ∀ x0 x1 x2 x3 . nat_p x0nat_p x1equip x0 x2equip x1 x3equip (add_nat x0 x1) (setsum x2 x3)
Known nat_3nat_3 : nat_p 3
Known equip_refequip_ref : ∀ x0 . equip x0 x0
Known setminusE2setminusE2 : ∀ x0 x1 x2 . x2setminus x0 x1nIn x2 x1
Known binintersectE1binintersectE1 : ∀ x0 x1 x2 . x2binintersect x0 x1x2x0
Known binunion_combinunion_com : ∀ x0 x1 . binunion x0 x1 = binunion x1 x0
Known binintersect_combinintersect_com : ∀ x0 x1 . binintersect x0 x1 = binintersect x1 x0
Known a8a92.. : ∀ x0 x1 . x0 = binunion (setminus x0 x1) (binintersect x0 x1)
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Known bd216.. : add_nat u5 u2 = u7
Theorem 0831e.. : ∀ x0 x1 . atleastp u3 (binintersect x0 x1)atleastp x0 u5atleastp x1 u5atleastp (binunion x0 x1) u7 (proof)
Definition u8 := ordsucc u7
Definition u9 := ordsucc u8
Theorem 63ef9.. : add_nat u7 u2 = u9 (proof)
Definition u10 := ordsucc u9
Definition u11 := ordsucc u10
Definition u12 := ordsucc u11
Definition u13 := ordsucc u12
Definition u14 := ordsucc u13
Definition u15 := ordsucc u14
Definition u16 := ordsucc u15
Definition u17 := ordsucc u16
Known nat_7nat_7 : nat_p 7
Known nat_6nat_6 : nat_p 6
Known nat_4nat_4 : nat_p 4
Theorem 442f5.. : add_nat u9 u8 = u17 (proof)
Param SingSing : ιι
Known 7f437.. : ∀ x0 x1 x2 . x2x0atleastp x0 (ordsucc x1)atleastp (setminus x0 (Sing x2)) x1
Param SepSep : ι(ιο) → ι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition DirGraphOutNeighbors := λ x0 . λ x1 : ι → ι → ο . λ x2 . {x3 ∈ x0|and (x2 = x3∀ x4 : ο . x4) (x1 x2 x3)}
Known 7fc90.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)(∀ x2 . x2x0atleastp u3 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x1 x3 x4))∀ x2 . x2x0∀ x3 . x3DirGraphOutNeighbors x0 x1 x2∀ x4 . x4DirGraphOutNeighbors x0 x1 x2(x3 = x4∀ x5 : ο . x5)not (x1 x3 x4)
Definition u18 := ordsucc u17
Known b4538.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18equip (DirGraphOutNeighbors u18 x0 x1) u5
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Known binunion_Subq_minbinunion_Subq_min : ∀ x0 x1 x2 . x0x2x1x2binunion x0 x1x2
Known Sep_SubqSep_Subq : ∀ x0 . ∀ x1 : ι → ο . Sep x0 x1x0
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known 561b1.. : add_nat u5 u1 = u6
Known 04353.. : ∀ x0 x1 . x1x0atleastp u1 x0
Known SingISingI : ∀ x0 . x0Sing x0
Known binintersectIbinintersectI : ∀ x0 x1 x2 . x2x0x2x1x2binintersect x0 x1
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x2x0
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Known SepE2SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x1 x2
Theorem 52ae1.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2u18(x1 = x2∀ x3 : ο . x3)not (x0 x1 x2)atleastp u1 (binintersect (DirGraphOutNeighbors u18 x0 x1) (DirGraphOutNeighbors u18 x0 x2)) (proof)
Param UPairUPair : ιιι
Definition TwoRamseyPropTwoRamseyProp := λ x0 x1 x2 . ∀ x3 : ι → ι → ο . (∀ x4 x5 . x3 x4 x5x3 x5 x4)or (∀ x4 : ο . (∀ x5 . and (x5x2) (and (equip x0 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)x3 x6 x7))x4)x4) (∀ x4 : ο . (∀ x5 . and (x5x2) (and (equip x1 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)not (x3 x6 x7)))x4)x4)
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1x0
Known f3bb6.. : add_nat 4 2 = 6
Known ada03.. : ∀ x0 x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)atleastp u2 x0
Known UPairI1UPairI1 : ∀ x0 x1 . x0UPair x0 x1
Known UPairI2UPairI2 : ∀ x0 x1 . x1UPair x0 x1
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known UPairEUPairE : ∀ x0 x1 x2 . x0UPair x1 x2or (x0 = x1) (x0 = x2)
Known 46dcf.. : ∀ x0 x1 x2 x3 . atleastp x2 x3TwoRamseyProp x0 x1 x2TwoRamseyProp x0 x1 x3
Known TwoRamseyProp_3_4_9TwoRamseyProp_3_4_9 : TwoRamseyProp 3 4 9
Known nat_8nat_8 : nat_p 8
Known nat_17nat_17 : nat_p 17
Known 80238.. : ∀ x0 x1 . x0x1x1 = binunion x0 (setminus x1 x0)
Known c558f.. : ∀ x0 x1 x2 x3 . atleastp x0 x2atleastp x1 x3atleastp (binunion x0 x1) (setsum x2 x3)
Known nat_9nat_9 : nat_p 9
Known b3e89.. : ∀ x0 x1 . atleastp (UPair x0 x1) u2
Theorem 2b310.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2u18(x1 = x2∀ x3 : ο . x3)not (x0 x1 x2)atleastp (binintersect (DirGraphOutNeighbors u18 x0 x1) (DirGraphOutNeighbors u18 x0 x2)) u2 (proof)
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Theorem 86f86.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2u18(x1 = x2∀ x3 : ο . x3)not (x0 x1 x2)or (equip (binintersect (DirGraphOutNeighbors u18 x0 x1) (DirGraphOutNeighbors u18 x0 x2)) u1) (equip (binintersect (DirGraphOutNeighbors u18 x0 x1) (DirGraphOutNeighbors u18 x0 x2)) u2) (proof)