vout |
---|
PrCit../20208.. 4.91 barsTMMyP../47946.. ownership of 32519.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMba1../3eb28.. ownership of 1834b.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0PUcAV../7cabf.. doc published by Pr4zB..Param u12 : ιParam ordsuccordsucc : ι → ιDefinition u13 := ordsucc u12Definition u14 := ordsucc u13Definition u15 := ordsucc u14Definition u16 := ordsucc u15Definition u17 := ordsucc u16Definition TwoRamseyGraph_3_6_Church17 := λ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . λ x2 x3 . x0 (x1 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x3) (x1 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x3 x3) (x1 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x3 x2 x3 x3) (x1 x3 x2 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x3 x2 x2 x2 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3) (x1 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x3 x2 x2 x3 x3 x3 x3) (x1 x3 x2 x3 x3 x2 x3 x2 x2 x2 x3 x3 x3 x3 x3 x2 x3 x3) (x1 x2 x3 x3 x3 x3 x2 x2 x2 x3 x2 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x2 x3 x3 x2 x2 x2 x3 x3 x3) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x2 x2 x3 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3 x2 x2 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x2 x3 x3 x2 x3 x3 x3 x2) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x2) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x3 x2 x3 x2) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x2 x3 x3 x3 x2 x2) (x1 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x2 x2)Definition SubqSubq := λ x0 x1 . ∀ x2 . x2 ∈ x0 ⟶ x2 ∈ x1Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3 ∈ x0 ⟶ x2 x3 ∈ x1) (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 x3 = x2 x4 ⟶ x3 = x4)Definition atleastpatleastp := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . inj x0 x1 x3 ⟶ x2) ⟶ x2Definition u1 := 1Definition u2 := ordsucc u1Definition u3 := ordsucc u2Definition u4 := ordsucc u3Definition u5 := ordsucc u4Definition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseDefinition u6 := ordsucc u5Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x2) ⟶ (x1 ⟶ x2) ⟶ x2Known xmxm : ∀ x0 : ο . or x0 (not x0)Param binintersectbinintersect : ι → ι → ιKnown binintersectE1binintersectE1 : ∀ x0 x1 x2 . x2 ∈ binintersect x0 x1 ⟶ x2 ∈ x0Param If_iIf_i : ο → ι → ι → ιKnown andIandI : ∀ x0 x1 : ο . x0 ⟶ x1 ⟶ and x0 x1Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0 ⟶ If_i x0 x1 x2 = x1Known ordsucc_injordsucc_inj : ∀ x0 x1 . ordsucc x0 = ordsucc x1 ⟶ x0 = x1Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0 ⟶ If_i x0 x1 x2 = x2Known FalseEFalseE : False ⟶ ∀ x0 : ο . x0Known ordsuccI1ordsuccI1 : ∀ x0 . x0 ⊆ ordsucc x0Param nat_pnat_p : ι → οKnown nat_ordsucc_in_ordsuccnat_ordsucc_in_ordsucc : ∀ x0 . nat_p x0 ⟶ ∀ x1 . x1 ∈ x0 ⟶ ordsucc x1 ∈ ordsucc x0Known nat_5nat_5 : nat_p 5Known binintersectIbinintersectI : ∀ x0 x1 x2 . x2 ∈ x0 ⟶ x2 ∈ x1 ⟶ x2 ∈ binintersect x0 x1Known ordsuccEordsuccE : ∀ x0 x1 . x1 ∈ ordsucc x0 ⟶ or (x1 ∈ x0) (x1 = x0)Definition nInnIn := λ x0 x1 . not (x0 ∈ x1)Known In_irrefIn_irref : ∀ x0 . nIn x0 x0Known nat_transnat_trans : ∀ x0 . nat_p x0 ⟶ ∀ x1 . x1 ∈ x0 ⟶ x1 ⊆ x0Known nat_6nat_6 : nat_p 6Known ordsuccI2ordsuccI2 : ∀ x0 . x0 ∈ ordsucc x0Known binintersectEbinintersectE : ∀ x0 x1 x2 . x2 ∈ binintersect x0 x1 ⟶ and (x2 ∈ x0) (x2 ∈ x1)Known fa664.. : u16 = u12 ⟶ ∀ x0 : ο . x0Known 4326e.. : u16 = u13 ⟶ ∀ x0 : ο . x0Known 71c5e.. : u16 = u14 ⟶ ∀ x0 : ο . x0Known 41073.. : u16 = u15 ⟶ ∀ x0 : ο . x0Theorem 32519.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . (x0 u12 = λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x14) ⟶ (x0 u13 = λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x15) ⟶ (x0 u14 = λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x16) ⟶ (x0 u15 = λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x17) ⟶ (x0 u16 = λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x18) ⟶ ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ u17 ⟶ ∀ x3 . x3 ∈ u17 ⟶ (x2 = x3 ⟶ ∀ x4 : ο . x4) ⟶ (TwoRamseyGraph_3_6_Church17 (x0 x2) (x0 x3) = λ x5 x6 . x5) ⟶ x1 x2 x3) ⟶ (∀ x2 . x2 ⊆ u12 ⟶ atleastp u5 x2 ⟶ not (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ not (x1 x3 x4))) ⟶ (∀ x2 . x2 ⊆ u16 ⟶ atleastp u6 x2 ⟶ not (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ not (x1 x3 x4))) ⟶ ∀ x2 . x2 ⊆ u17 ⟶ atleastp u6 x2 ⟶ not (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ not (x1 x3 x4)) (proof) |
|