Search for blocks/addresses/...

Proofgold Signed Transaction

vin
Pr9FA../4ad80..
PUNMe../313c6..
vout
Pr9FA../7bb41.. 19.99 bars
TMNg8../171c4.. ownership of 96b23.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMRxT../0be09.. ownership of 268f0.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMY35../3fd6d.. ownership of 76534.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMYhy../9aff5.. ownership of eab12.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMau3../3bc47.. ownership of 5e130.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMHe1../47dc8.. ownership of ac014.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMXm1../d5eac.. ownership of 4da66.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMGdZ../79c8f.. ownership of 21d90.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMFrB../9d8fe.. ownership of 5c0c7.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMV9L../8b01a.. ownership of 409e2.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMZXn../6a42f.. ownership of 8d1a3.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMWcM../c9529.. ownership of 9cb32.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMaCB../cb533.. ownership of 5c835.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMTVD../3525c.. ownership of 71586.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMFLG../e4bda.. ownership of cc20f.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMWNc../6cb69.. ownership of 81b69.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMG8c../932d8.. ownership of 6c32d.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMWNa../03438.. ownership of bf3f6.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMTpJ../8f356.. ownership of cddbc.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMYYz../cd7b2.. ownership of c3141.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMSui../165e9.. ownership of e4a26.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMdwA../e352c.. ownership of 148a1.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMGDx../c1b5c.. ownership of da9a6.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMYDL../6b626.. ownership of 3c1cf.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMJph../cb0e9.. ownership of e00e5.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMMd7../60b9a.. ownership of 853f4.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMKQf../4169d.. ownership of be535.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMcxw../491d6.. ownership of 6c4aa.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMKFU../e319a.. ownership of 51ce1.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMbdd../fa367.. ownership of 6c476.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMN5Y../54ea5.. ownership of 4d074.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMdGd../2c9b1.. ownership of a3ba1.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMLtc../9e673.. ownership of 3e626.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMXQD../bd110.. ownership of 80e22.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMZjQ../fe924.. ownership of 1c1fb.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMRhn../46214.. ownership of b0586.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMa5h../2338e.. ownership of bacb8.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMRfn../68143.. ownership of f814a.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMNQk../49f98.. ownership of 2c816.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMFAm../5dd41.. ownership of f8965.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMcec../39883.. ownership of f91df.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMUVE../e3308.. ownership of eea7f.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMYcE../2cae4.. ownership of 7a10c.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMctG../60713.. ownership of 0020d.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMYM3../1caf4.. ownership of 499c1.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
PUefP../8d9f2.. doc published by Pr6Pc..
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition explicit_Natsexplicit_Nats := λ x0 x1 . λ x2 : ι → ι . and (and (and (and (x1x0) (∀ x3 . x3x0x2 x3x0)) (∀ x3 . x3x0x2 x3 = x1∀ x4 : ο . x4)) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)) (∀ x3 : ι → ο . x3 x1(∀ x4 . x3 x4x3 (x2 x4))∀ x4 . x4x0x3 x4)
Known and5Iand5I : ∀ x0 x1 x2 x3 x4 : ο . x0x1x2x3x4and (and (and (and x0 x1) x2) x3) x4
Theorem explicit_Nats_Iexplicit_Nats_I : ∀ x0 x1 . ∀ x2 : ι → ι . x1x0(∀ x3 . x3x0x2 x3x0)(∀ x3 . x3x0x2 x3 = x1∀ x4 : ο . x4)(∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)(∀ x3 : ι → ο . x3 x1(∀ x4 . x3 x4x3 (x2 x4))∀ x4 . x4x0x3 x4)explicit_Nats x0 x1 x2 (proof)
Known and5Eand5E : ∀ x0 x1 x2 x3 x4 : ο . and (and (and (and x0 x1) x2) x3) x4∀ x5 : ο . (x0x1x2x3x4x5)x5
Theorem explicit_Nats_Eexplicit_Nats_E : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 : ο . (explicit_Nats x0 x1 x2x1x0(∀ x4 . x4x0x2 x4x0)(∀ x4 . x4x0x2 x4 = x1∀ x5 : ο . x5)(∀ x4 . x4x0∀ x5 . x5x0x2 x4 = x2 x5x4 = x5)(∀ x4 : ι → ο . x4 x1(∀ x5 . x4 x5x4 (x2 x5))∀ x5 . x5x0x4 x5)x3)explicit_Nats x0 x1 x2x3 (proof)
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem explicit_Nats_indexplicit_Nats_ind : ∀ x0 x1 . ∀ x2 : ι → ι . explicit_Nats x0 x1 x2∀ x3 : ι → ο . x3 x1(∀ x4 . x4x0x3 x4x3 (x2 x4))∀ x4 . x4x0x3 x4 (proof)
Param omegaomega : ι
Param ordsuccordsucc : ιι
Known e4648.. : 0omega
Known omega_ordsuccomega_ordsucc : ∀ x0 . x0omegaordsucc x0omega
Known neq_ordsucc_0neq_ordsucc_0 : ∀ x0 . ordsucc x0 = 0∀ x1 : ο . x1
Known ordsucc_injordsucc_inj : ∀ x0 x1 . ordsucc x0 = ordsucc x1x0 = x1
Definition nat_pnat_p := λ x0 . ∀ x1 : ι → ο . x1 0(∀ x2 . x1 x2x1 (ordsucc x2))x1 x0
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Theorem explicit_Nats_omegaexplicit_Nats_omega : explicit_Nats omega 0 ordsucc (proof)
Definition bijbij := λ x0 x1 . λ x2 : ι → ι . and (and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)) (∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)
Theorem explicit_Nats_transferexplicit_Nats_transfer : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 x4 . ∀ x5 x6 : ι → ι . explicit_Nats x0 x1 x2bij x0 x3 x6x6 x1 = x4(∀ x7 . x7x0x6 (x2 x7) = x5 (x6 x7))explicit_Nats x3 x4 x5 (proof)
Definition explicit_Fieldexplicit_Field := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . and (and (and (and (and (and (and (and (and (and (and (and (and (∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6x0) (∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7)) (∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6 = x3 x6 x5)) (x1x0)) (∀ x5 . x5x0x3 x1 x5 = x5)) (∀ x5 . x5x0∀ x6 : ο . (∀ x7 . and (x7x0) (x3 x5 x7 = x1)x6)x6)) (∀ x5 . x5x0∀ x6 . x6x0x4 x5 x6x0)) (∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 x5 (x4 x6 x7) = x4 (x4 x5 x6) x7)) (∀ x5 . x5x0∀ x6 . x6x0x4 x5 x6 = x4 x6 x5)) (x2x0)) (x2 = x1∀ x5 : ο . x5)) (∀ x5 . x5x0x4 x2 x5 = x5)) (∀ x5 . x5x0(x5 = x1∀ x6 : ο . x6)∀ x6 : ο . (∀ x7 . and (x7x0) (x4 x5 x7 = x2)x6)x6)) (∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 x5 (x3 x6 x7) = x3 (x4 x5 x6) (x4 x5 x7))
Known and7Iand7I : ∀ x0 x1 x2 x3 x4 x5 x6 : ο . x0x1x2x3x4x5x6and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6
Theorem explicit_Field_Iexplicit_Field_I : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . (∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6x0)(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7)(∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6 = x3 x6 x5)x1x0(∀ x5 . x5x0x3 x1 x5 = x5)(∀ x5 . x5x0∀ x6 : ο . (∀ x7 . and (x7x0) (x3 x5 x7 = x1)x6)x6)(∀ x5 . x5x0∀ x6 . x6x0x4 x5 x6x0)(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 x5 (x4 x6 x7) = x4 (x4 x5 x6) x7)(∀ x5 . x5x0∀ x6 . x6x0x4 x5 x6 = x4 x6 x5)x2x0(x2 = x1∀ x5 : ο . x5)(∀ x5 . x5x0x4 x2 x5 = x5)(∀ x5 . x5x0(x5 = x1∀ x6 : ο . x6)∀ x6 : ο . (∀ x7 . and (x7x0) (x4 x5 x7 = x2)x6)x6)(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 x5 (x3 x6 x7) = x3 (x4 x5 x6) (x4 x5 x7))explicit_Field x0 x1 x2 x3 x4 (proof)
Known and7Eand7E : ∀ x0 x1 x2 x3 x4 x5 x6 : ο . and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6∀ x7 : ο . (x0x1x2x3x4x5x6x7)x7
Theorem explicit_Field_Eexplicit_Field_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ο . (explicit_Field x0 x1 x2 x3 x4(∀ x6 . x6x0∀ x7 . x7x0x3 x6 x7x0)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x3 x6 (x3 x7 x8) = x3 (x3 x6 x7) x8)(∀ x6 . x6x0∀ x7 . x7x0x3 x6 x7 = x3 x7 x6)x1x0(∀ x6 . x6x0x3 x1 x6 = x6)(∀ x6 . x6x0∀ x7 : ο . (∀ x8 . and (x8x0) (x3 x6 x8 = x1)x7)x7)(∀ x6 . x6x0∀ x7 . x7x0x4 x6 x7x0)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 x6 (x4 x7 x8) = x4 (x4 x6 x7) x8)(∀ x6 . x6x0∀ x7 . x7x0x4 x6 x7 = x4 x7 x6)x2x0(x2 = x1∀ x6 : ο . x6)(∀ x6 . x6x0x4 x2 x6 = x6)(∀ x6 . x6x0(x6 = x1∀ x7 : ο . x7)∀ x7 : ο . (∀ x8 . and (x8x0) (x4 x6 x8 = x2)x7)x7)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 x6 (x3 x7 x8) = x3 (x4 x6 x7) (x4 x6 x8))x5)explicit_Field x0 x1 x2 x3 x4x5 (proof)
Definition explicit_Field_minusexplicit_Field_minus := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . λ x5 . prim0 (λ x6 . and (x6x0) (x3 x5 x6 = x1))
Known Eps_i_exEps_i_ex : ∀ x0 : ι → ο . (∀ x1 : ο . (∀ x2 . x0 x2x1)x1)x0 (prim0 x0)
Theorem explicit_Field_minus_propexplicit_Field_minus_prop : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0and (explicit_Field_minus x0 x1 x2 x3 x4 x5x0) (x3 x5 (explicit_Field_minus x0 x1 x2 x3 x4 x5) = x1) (proof)
Theorem explicit_Field_minus_closexplicit_Field_minus_clos : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0explicit_Field_minus x0 x1 x2 x3 x4 x5x0 (proof)
Theorem explicit_Field_minus_Rexplicit_Field_minus_R : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0x3 x5 (explicit_Field_minus x0 x1 x2 x3 x4 x5) = x1 (proof)
Theorem explicit_Field_minus_Lexplicit_Field_minus_L : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0x3 (explicit_Field_minus x0 x1 x2 x3 x4 x5) x5 = x1 (proof)
Theorem explicit_Field_plus_cancelLexplicit_Field_plus_cancelL : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x3 x5 x6 = x3 x5 x7x6 = x7 (proof)
Theorem explicit_Field_plus_cancelRexplicit_Field_plus_cancelR : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x3 x5 x7 = x3 x6 x7x5 = x6 (proof)
Theorem explicit_Field_minus_involexplicit_Field_minus_invol : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0explicit_Field_minus x0 x1 x2 x3 x4 (explicit_Field_minus x0 x1 x2 x3 x4 x5) = x5 (proof)
Theorem explicit_Field_minus_one_Inexplicit_Field_minus_one_In : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4explicit_Field_minus x0 x1 x2 x3 x4 x2x0 (proof)
Theorem explicit_Field_zero_multRexplicit_Field_zero_multR : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0x4 x5 x1 = x1 (proof)
Theorem explicit_Field_zero_multLexplicit_Field_zero_multL : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0x4 x1 x5 = x1 (proof)
Theorem explicit_Field_minus_multexplicit_Field_minus_mult : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0explicit_Field_minus x0 x1 x2 x3 x4 x5 = x4 (explicit_Field_minus x0 x1 x2 x3 x4 x2) x5 (proof)
Theorem explicit_Field_minus_one_squareexplicit_Field_minus_one_square : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4x4 (explicit_Field_minus x0 x1 x2 x3 x4 x2) (explicit_Field_minus x0 x1 x2 x3 x4 x2) = x2 (proof)
Theorem explicit_Field_minus_squareexplicit_Field_minus_square : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0x4 (explicit_Field_minus x0 x1 x2 x3 x4 x5) (explicit_Field_minus x0 x1 x2 x3 x4 x5) = x4 x5 x5 (proof)
Definition iffiff := λ x0 x1 : ο . and (x0x1) (x1x0)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Definition explicit_OrderedFieldexplicit_OrderedField := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . λ x5 : ι → ι → ο . and (and (and (and (and (explicit_Field x0 x1 x2 x3 x4) (∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x5 x6 x7x5 x7 x8x5 x6 x8)) (∀ x6 . x6x0∀ x7 . x7x0iff (and (x5 x6 x7) (x5 x7 x6)) (x6 = x7))) (∀ x6 . x6x0∀ x7 . x7x0or (x5 x6 x7) (x5 x7 x6))) (∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x5 x6 x7x5 (x3 x6 x8) (x3 x7 x8))) (∀ x6 . x6x0∀ x7 . x7x0x5 x1 x6x5 x1 x7x5 x1 (x4 x6 x7))
Known and6Iand6I : ∀ x0 x1 x2 x3 x4 x5 : ο . x0x1x2x3x4x5and (and (and (and (and x0 x1) x2) x3) x4) x5
Theorem explicit_OrderedField_Iexplicit_OrderedField_I : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_Field x0 x1 x2 x3 x4(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x5 x6 x7x5 x7 x8x5 x6 x8)(∀ x6 . x6x0∀ x7 . x7x0iff (and (x5 x6 x7) (x5 x7 x6)) (x6 = x7))(∀ x6 . x6x0∀ x7 . x7x0or (x5 x6 x7) (x5 x7 x6))(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x5 x6 x7x5 (x3 x6 x8) (x3 x7 x8))(∀ x6 . x6x0∀ x7 . x7x0x5 x1 x6x5 x1 x7x5 x1 (x4 x6 x7))explicit_OrderedField x0 x1 x2 x3 x4 x5 (proof)
Known and6Eand6E : ∀ x0 x1 x2 x3 x4 x5 : ο . and (and (and (and (and x0 x1) x2) x3) x4) x5∀ x6 : ο . (x0x1x2x3x4x5x6)x6
Theorem explicit_OrderedField_Eexplicit_OrderedField_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ο . (explicit_OrderedField x0 x1 x2 x3 x4 x5explicit_Field x0 x1 x2 x3 x4(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0x5 x7 x8x5 x8 x9x5 x7 x9)(∀ x7 . x7x0∀ x8 . x8x0iff (and (x5 x7 x8) (x5 x8 x7)) (x7 = x8))(∀ x7 . x7x0∀ x8 . x8x0or (x5 x7 x8) (x5 x8 x7))(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0x5 x7 x8x5 (x3 x7 x9) (x3 x8 x9))(∀ x7 . x7x0∀ x8 . x8x0x5 x1 x7x5 x1 x8x5 x1 (x4 x7 x8))x6)explicit_OrderedField x0 x1 x2 x3 x4 x5x6 (proof)
Definition ltlt := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . λ x5 : ι → ι → ο . λ x6 x7 . and (x5 x6 x7) (x6 = x7∀ x8 : ο . x8)
Definition natOfOrderedField_pnatOfOrderedField_p := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . λ x5 : ι → ι → ο . λ x6 . ∀ x7 : ι → ο . x7 x1(∀ x8 . x7 x8x7 (x3 x8 x2))x7 x6
Param SepSep : ι(ιο) → ι
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Theorem explicit_Nats_natOfOrderedFieldexplicit_Nats_natOfOrderedField : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5explicit_Nats (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) x1 (λ x6 . x3 x6 x2) (proof)
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Param apap : ιιι
Definition explicit_Realsexplicit_Reals := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . λ x5 : ι → ι → ο . and (and (explicit_OrderedField x0 x1 x2 x3 x4 x5) (∀ x6 . x6x0∀ x7 . x7x0lt x0 x1 x2 x3 x4 x5 x1 x6x5 x1 x7∀ x8 : ο . (∀ x9 . and (x9Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) (x5 x7 (x4 x9 x6))x8)x8)) (∀ x6 . x6setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))∀ x7 . x7setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))(∀ x8 . x8Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (and (x5 (ap x6 x8) (ap x7 x8)) (x5 (ap x6 x8) (ap x6 (x3 x8 x2)))) (x5 (ap x7 (x3 x8 x2)) (ap x7 x8)))∀ x8 : ο . (∀ x9 . and (x9x0) (∀ x10 . x10Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (x5 (ap x6 x10) x9) (x5 x9 (ap x7 x10)))x8)x8)
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Theorem explicit_Reals_Iexplicit_Reals_I : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5(∀ x6 . x6x0∀ x7 . x7x0lt x0 x1 x2 x3 x4 x5 x1 x6x5 x1 x7∀ x8 : ο . (∀ x9 . and (x9Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) (x5 x7 (x4 x9 x6))x8)x8)(∀ x6 . x6setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))∀ x7 . x7setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))(∀ x8 . x8Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (and (x5 (ap x6 x8) (ap x7 x8)) (x5 (ap x6 x8) (ap x6 (x3 x8 x2)))) (x5 (ap x7 (x3 x8 x2)) (ap x7 x8)))∀ x8 : ο . (∀ x9 . and (x9x0) (∀ x10 . x10Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (x5 (ap x6 x10) x9) (x5 x9 (ap x7 x10)))x8)x8)explicit_Reals x0 x1 x2 x3 x4 x5 (proof)
Known and3Eand3E : ∀ x0 x1 x2 : ο . and (and x0 x1) x2∀ x3 : ο . (x0x1x2x3)x3
Theorem explicit_Reals_Eexplicit_Reals_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ο . (explicit_Reals x0 x1 x2 x3 x4 x5explicit_OrderedField x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0lt x0 x1 x2 x3 x4 x5 x1 x7x5 x1 x8∀ x9 : ο . (∀ x10 . and (x10Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) (x5 x8 (x4 x10 x7))x9)x9)(∀ x7 . x7setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))∀ x8 . x8setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))(∀ x9 . x9Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (and (x5 (ap x7 x9) (ap x8 x9)) (x5 (ap x7 x9) (ap x7 (x3 x9 x2)))) (x5 (ap x8 (x3 x9 x2)) (ap x8 x9)))∀ x9 : ο . (∀ x10 . and (x10x0) (∀ x11 . x11Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (x5 (ap x7 x11) x10) (x5 x10 (ap x8 x11)))x9)x9)x6)explicit_Reals x0 x1 x2 x3 x4 x5x6 (proof)
Theorem explicit_Field_transferexplicit_Field_transfer : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 x6 x7 . ∀ x8 x9 : ι → ι → ι . ∀ x10 : ι → ι . explicit_Field x0 x1 x2 x3 x4bij x0 x5 x10x10 x1 = x6x10 x2 = x7(∀ x11 . x11x0∀ x12 . x12x0x10 (x3 x11 x12) = x8 (x10 x11) (x10 x12))(∀ x11 . x11x0∀ x12 . x12x0x10 (x4 x11 x12) = x9 (x10 x11) (x10 x12))explicit_Field x5 x6 x7 x8 x9 (proof)
Known iffIiffI : ∀ x0 x1 : ο . (x0x1)(x1x0)iff x0 x1
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Theorem explicit_OrderedField_transferexplicit_OrderedField_transfer : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 x7 x8 . ∀ x9 x10 : ι → ι → ι . ∀ x11 : ι → ι → ο . ∀ x12 : ι → ι . explicit_OrderedField x0 x1 x2 x3 x4 x5bij x0 x6 x12x12 x1 = x7x12 x2 = x8(∀ x13 . x13x0∀ x14 . x14x0x12 (x3 x13 x14) = x9 (x12 x13) (x12 x14))(∀ x13 . x13x0∀ x14 . x14x0x12 (x4 x13 x14) = x10 (x12 x13) (x12 x14))(∀ x13 . x13x0∀ x14 . x14x0iff (x5 x13 x14) (x11 (x12 x13) (x12 x14)))explicit_OrderedField x6 x7 x8 x9 x10 x11 (proof)
Param lamSigma : ι(ιι) → ι
Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x2x0
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Theorem explicit_Reals_transferexplicit_Reals_transfer : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 x7 x8 . ∀ x9 x10 : ι → ι → ι . ∀ x11 : ι → ι → ο . ∀ x12 : ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5bij x0 x6 x12x12 x1 = x7x12 x2 = x8(∀ x13 . x13x0∀ x14 . x14x0x12 (x3 x13 x14) = x9 (x12 x13) (x12 x14))(∀ x13 . x13x0∀ x14 . x14x0x12 (x4 x13 x14) = x10 (x12 x13) (x12 x14))(∀ x13 . x13x0∀ x14 . x14x0iff (x5 x13 x14) (x11 (x12 x13) (x12 x14)))explicit_Reals x6 x7 x8 x9 x10 x11 (proof)
Definition explicit_Complexexplicit_Complex := λ x0 . λ x1 x2 : ι → ι . λ x3 x4 x5 . λ x6 x7 : ι → ι → ι . and (and (and (and (and (and (and (and (explicit_Field x0 x3 x4 x6 x7) (∀ x8 : ο . (∀ x9 : ι → ι → ο . explicit_Reals {x10 ∈ x0|x1 x10 = x10} x3 x4 x6 x7 x9x8)x8)) (∀ x8 . x8x0x2 x8{x9 ∈ x0|x1 x9 = x9})) (x5x0)) (∀ x8 . x8x0x1 x8x0)) (∀ x8 . x8x0x2 x8x0)) (∀ x8 . x8x0x8 = x6 (x1 x8) (x7 x5 (x2 x8)))) (∀ x8 . x8x0∀ x9 . x9x0x1 x8 = x1 x9x2 x8 = x2 x9x8 = x9)) (x6 (x7 x5 x5) x4 = x3)
Theorem explicit_Complex_Iexplicit_Complex_I : ∀ x0 . ∀ x1 x2 : ι → ι . ∀ x3 x4 x5 . ∀ x6 x7 : ι → ι → ι . explicit_Field x0 x3 x4 x6 x7(∀ x8 : ο . (∀ x9 : ι → ι → ο . explicit_Reals {x10 ∈ x0|x1 x10 = x10} x3 x4 x6 x7 x9x8)x8)(∀ x8 . x8x0x2 x8{x9 ∈ x0|x1 x9 = x9})x5x0(∀ x8 . x8x0x1 x8x0)(∀ x8 . x8x0x2 x8x0)(∀ x8 . x8x0x8 = x6 (x1 x8) (x7 x5 (x2 x8)))(∀ x8 . x8x0∀ x9 . x9x0x1 x8 = x1 x9x2 x8 = x2 x9x8 = x9)x6 (x7 x5 x5) x4 = x3explicit_Complex x0 x1 x2 x3 x4 x5 x6 x7 (proof)