Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrKjC..
/
17d3d..
PUQMy..
/
75cf5..
vout
PrKjC..
/
68a39..
0.07 bars
TMMZL..
/
b6fea..
ownership of
362a9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGde..
/
b06bf..
ownership of
3475f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJBg..
/
1dbee..
ownership of
cd1cc..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbqP..
/
7fb92..
ownership of
072f5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUhn..
/
cdab0..
ownership of
d0148..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVNs..
/
6a90f..
ownership of
d1bdb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTBH..
/
0863e..
ownership of
35a28..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXYn..
/
85ce8..
ownership of
7596b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQVv..
/
c40a3..
ownership of
ae371..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMV8V..
/
b3946..
ownership of
ebf41..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMU5o..
/
7dcc3..
ownership of
5aa18..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMwf..
/
f0f2c..
ownership of
0d0f5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSBc..
/
20520..
ownership of
67a61..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNAK..
/
4f138..
ownership of
18939..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZh5..
/
66b25..
ownership of
b0788..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHHk..
/
d6918..
ownership of
1c896..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRzX..
/
93ca7..
ownership of
2b666..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMDq..
/
b629b..
ownership of
d4042..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSdi..
/
ebf72..
ownership of
6bb40..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMbY..
/
b769f..
ownership of
7c28f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVh8..
/
d7a5f..
ownership of
915db..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMz7..
/
ab5bf..
ownership of
de795..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLcW..
/
2a056..
ownership of
760de..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbHT..
/
74072..
ownership of
677ff..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMN1M..
/
88c77..
ownership of
b1012..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQfZ..
/
85d54..
ownership of
dbe6f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUNQS..
/
25f4e..
doc published by
PrGxv..
Theorem
f_eq_i
:
∀ x0 :
ι → ι
.
∀ x1 x2 .
x1
=
x2
⟶
x0
x1
=
x0
x2
(proof)
Theorem
f_eq_i_i
:
∀ x0 :
ι →
ι → ι
.
∀ x1 x2 x3 x4 .
x1
=
x2
⟶
x3
=
x4
⟶
x0
x1
x3
=
x0
x2
x4
(proof)
Param
explicit_Field
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Param
explicit_Field_minus
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
explicit_Field_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 : ο .
(
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
prim1
(
x3
x6
x7
)
x0
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x3
x6
(
x3
x7
x8
)
=
x3
(
x3
x6
x7
)
x8
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x6
x7
=
x3
x7
x6
)
⟶
prim1
x1
x0
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x3
x1
x6
=
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
prim1
x8
x0
)
(
x3
x6
x8
=
x1
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
prim1
(
x4
x6
x7
)
x0
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x6
(
x4
x7
x8
)
=
x4
(
x4
x6
x7
)
x8
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
prim1
x2
x0
⟶
(
x2
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x4
x2
x6
=
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
(
x6
=
x1
⟶
∀ x7 : ο .
x7
)
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
prim1
x8
x0
)
(
x4
x6
x8
=
x2
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x6
(
x3
x7
x8
)
=
x3
(
x4
x6
x7
)
(
x4
x6
x8
)
)
⟶
x5
)
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
x5
Known
explicit_Field_plus_cancelL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x5
x6
=
x3
x5
x7
⟶
x6
=
x7
Known
explicit_Field_minus_clos
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
x0
Known
explicit_Field_minus_R
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x3
x5
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x1
Theorem
explicit_Field_minus_zero
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x1
=
x1
(proof)
Theorem
explicit_Field_dist_R
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
(
x3
x5
x6
)
x7
=
x3
(
x4
x5
x7
)
(
x4
x6
x7
)
(proof)
Known
explicit_Field_minus_mult
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x5
=
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x2
)
x5
Known
explicit_Field_minus_one_In
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
prim1
(
explicit_Field_minus
x0
x1
x2
x3
x4
x2
)
x0
Theorem
explicit_Field_minus_plus_dist
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
(
x3
x5
x6
)
=
x3
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
x6
)
(proof)
Theorem
explicit_Field_minus_mult_L
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
x6
=
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x5
x6
)
(proof)
Theorem
explicit_Field_minus_mult_R
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x4
x5
(
explicit_Field_minus
x0
x1
x2
x3
x4
x6
)
=
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x5
x6
)
(proof)
Definition
False
:=
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Known
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
explicit_Field_zero_multL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x4
x1
x5
=
x1
Theorem
explicit_Field_square_zero_inv
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x4
x5
x5
=
x1
⟶
x5
=
x1
(proof)
Param
explicit_OrderedField
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ο
Definition
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
explicit_OrderedField_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 : ο .
(
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x5
x7
x8
⟶
x5
x8
x9
⟶
x5
x7
x9
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
iff
(
and
(
x5
x7
x8
)
(
x5
x8
x7
)
)
(
x7
=
x8
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
or
(
x5
x7
x8
)
(
x5
x8
x7
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x5
x7
x8
⟶
x5
(
x3
x7
x9
)
(
x3
x8
x9
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x5
x1
x7
⟶
x5
x1
x8
⟶
x5
x1
(
x4
x7
x8
)
)
⟶
x6
)
⟶
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
x6
Theorem
explicit_OrderedField_minus_leq
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x5
x6
x7
⟶
x5
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
x6
)
(proof)
Known
explicit_Field_minus_square
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x4
x5
x5
Theorem
explicit_OrderedField_square_nonneg
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x0
⟶
x5
x1
(
x4
x6
x6
)
(proof)
Theorem
explicit_OrderedField_sum_squares_nonneg
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x5
x1
(
x3
(
x4
x6
x6
)
(
x4
x7
x7
)
)
(proof)
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
d0148..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x5
x1
x6
⟶
x5
x1
x7
⟶
x3
x6
x7
=
x1
⟶
x7
=
x1
(proof)
Theorem
explicit_OrderedField_sum_nonneg_zero_inv
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x5
x1
x6
⟶
x5
x1
x7
⟶
x3
x6
x7
=
x1
⟶
and
(
x6
=
x1
)
(
x7
=
x1
)
(proof)
Theorem
explicit_OrderedField_sum_squares_zero_inv
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
(
x4
x6
x6
)
(
x4
x7
x7
)
=
x1
⟶
and
(
x6
=
x1
)
(
x7
=
x1
)
(proof)