Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr6A7..
/
50b99..
PUen9..
/
b389c..
vout
Pr6A7..
/
d41db..
0.10 bars
TMKAf..
/
39f54..
ownership of
67a09..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNKz..
/
a817a..
ownership of
8c49e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaW6..
/
8c21c..
ownership of
12ced..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMW1..
/
41a79..
ownership of
2013c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJjH..
/
cf579..
ownership of
c6be8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRjF..
/
c2f24..
ownership of
e3fe3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRKD..
/
9c590..
ownership of
89161..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbsT..
/
48870..
ownership of
4e3ad..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMY2v..
/
0c78f..
ownership of
45594..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZCj..
/
733ff..
ownership of
8a270..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbip..
/
51efc..
ownership of
bb7ec..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcM2..
/
702bf..
ownership of
c492b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQ5a..
/
91ca1..
ownership of
a01c2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWwY..
/
bc664..
ownership of
31315..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPGu..
/
6b819..
ownership of
b1f8d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPDm..
/
5d0f4..
ownership of
700e7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMce1..
/
e7be9..
ownership of
acfea..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaYe..
/
b8505..
ownership of
2eef7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXTK..
/
169f8..
ownership of
b0d45..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYno..
/
489a7..
ownership of
bd1f5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMS63..
/
b3e42..
ownership of
56c15..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMS9s..
/
2b7f9..
ownership of
8570a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVYT..
/
ac114..
ownership of
1ecc3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFz6..
/
d1ed0..
ownership of
67799..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMyn..
/
b397d..
ownership of
e079b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMS31..
/
ee508..
ownership of
161c9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTYP..
/
301c6..
ownership of
ae69b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdv7..
/
f4c6c..
ownership of
135d0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSig..
/
022db..
ownership of
11606..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKR8..
/
cdf91..
ownership of
babb9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcCU..
/
ee725..
ownership of
e1db4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXCJ..
/
346fe..
ownership of
67f51..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYRG..
/
f7284..
ownership of
8a72a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMb4x..
/
adaba..
ownership of
6abb8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUBB..
/
5f07d..
ownership of
7a466..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMRM..
/
1b4ba..
ownership of
4d4fa..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUT3K..
/
72f35..
doc published by
PrCmT..
Known
df_trls__df_trlson__df_pths__df_spths__df_pthson__df_spthson__df_clwlks__df_crcts__df_cycls__df_wwlks__df_wwlksn__df_wwlksnon__df_wspthsn__df_wspthsnon__df_clwwlk__df_clwwlkn__df_clwwlknOLD__df_clwwlknon
:
∀ x0 : ο .
(
wceq
ctrls
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
copab
(
λ x2 x3 .
wa
(
wbr
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cwlks
)
)
(
wfun
(
ccnv
(
cv
x2
)
)
)
)
)
)
⟶
wceq
ctrlson
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
cvtx
)
(
λ x2 x3 .
cfv
(
cv
x1
)
cvtx
)
(
λ x2 x3 .
copab
(
λ x4 x5 .
wa
(
wbr
(
cv
x4
)
(
cv
x5
)
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cwlkson
)
)
)
(
wbr
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x1
)
ctrls
)
)
)
)
)
)
⟶
wceq
cpths
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
copab
(
λ x2 x3 .
w3a
(
wbr
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
ctrls
)
)
(
wfun
(
ccnv
(
cres
(
cv
x3
)
(
co
c1
(
cfv
(
cv
x2
)
chash
)
cfzo
)
)
)
)
(
wceq
(
cin
(
cima
(
cv
x3
)
(
cpr
cc0
(
cfv
(
cv
x2
)
chash
)
)
)
(
cima
(
cv
x3
)
(
co
c1
(
cfv
(
cv
x2
)
chash
)
cfzo
)
)
)
c0
)
)
)
)
⟶
wceq
cspths
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
copab
(
λ x2 x3 .
wa
(
wbr
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
ctrls
)
)
(
wfun
(
ccnv
(
cv
x3
)
)
)
)
)
)
⟶
wceq
cpthson
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
cvtx
)
(
λ x2 x3 .
cfv
(
cv
x1
)
cvtx
)
(
λ x2 x3 .
copab
(
λ x4 x5 .
wa
(
wbr
(
cv
x4
)
(
cv
x5
)
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
ctrlson
)
)
)
(
wbr
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x1
)
cpths
)
)
)
)
)
)
⟶
wceq
cspthson
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
cvtx
)
(
λ x2 x3 .
cfv
(
cv
x1
)
cvtx
)
(
λ x2 x3 .
copab
(
λ x4 x5 .
wa
(
wbr
(
cv
x4
)
(
cv
x5
)
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
ctrlson
)
)
)
(
wbr
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x1
)
cspths
)
)
)
)
)
)
⟶
wceq
cclwlks
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
copab
(
λ x2 x3 .
wa
(
wbr
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cwlks
)
)
(
wceq
(
cfv
cc0
(
cv
x3
)
)
(
cfv
(
cfv
(
cv
x2
)
chash
)
(
cv
x3
)
)
)
)
)
)
⟶
wceq
ccrcts
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
copab
(
λ x2 x3 .
wa
(
wbr
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
ctrls
)
)
(
wceq
(
cfv
cc0
(
cv
x3
)
)
(
cfv
(
cfv
(
cv
x2
)
chash
)
(
cv
x3
)
)
)
)
)
)
⟶
wceq
ccycls
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
copab
(
λ x2 x3 .
wa
(
wbr
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cpths
)
)
(
wceq
(
cfv
cc0
(
cv
x3
)
)
(
cfv
(
cfv
(
cv
x2
)
chash
)
(
cv
x3
)
)
)
)
)
)
⟶
wceq
cwwlks
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wa
(
wne
(
cv
x2
)
c0
)
(
wral
(
λ x3 .
wcel
(
cpr
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
co
(
cv
x3
)
c1
caddc
)
(
cv
x2
)
)
)
(
cfv
(
cv
x1
)
cedg
)
)
(
λ x3 .
co
cc0
(
co
(
cfv
(
cv
x2
)
chash
)
c1
cmin
)
cfzo
)
)
)
(
λ x2 .
cword
(
cfv
(
cv
x1
)
cvtx
)
)
)
)
⟶
wceq
cwwlksn
(
cmpt2
(
λ x1 x2 .
cn0
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
crab
(
λ x3 .
wceq
(
cfv
(
cv
x3
)
chash
)
(
co
(
cv
x1
)
c1
caddc
)
)
(
λ x3 .
cfv
(
cv
x2
)
cwwlks
)
)
)
⟶
wceq
cwwlksnon
(
cmpt2
(
λ x1 x2 .
cn0
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt2
(
λ x3 x4 .
cfv
(
cv
x2
)
cvtx
)
(
λ x3 x4 .
cfv
(
cv
x2
)
cvtx
)
(
λ x3 x4 .
crab
(
λ x5 .
wa
(
wceq
(
cfv
cc0
(
cv
x5
)
)
(
cv
x3
)
)
(
wceq
(
cfv
(
cv
x1
)
(
cv
x5
)
)
(
cv
x4
)
)
)
(
λ x5 .
co
(
cv
x1
)
(
cv
x2
)
cwwlksn
)
)
)
)
⟶
wceq
cwwspthsn
(
cmpt2
(
λ x1 x2 .
cn0
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
crab
(
λ x3 .
wex
(
λ x4 .
wbr
(
cv
x4
)
(
cv
x3
)
(
cfv
(
cv
x2
)
cspths
)
)
)
(
λ x3 .
co
(
cv
x1
)
(
cv
x2
)
cwwlksn
)
)
)
⟶
wceq
cwwspthsnon
(
cmpt2
(
λ x1 x2 .
cn0
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt2
(
λ x3 x4 .
cfv
(
cv
x2
)
cvtx
)
(
λ x3 x4 .
cfv
(
cv
x2
)
cvtx
)
(
λ x3 x4 .
crab
(
λ x5 .
wex
(
λ x6 .
wbr
(
cv
x6
)
(
cv
x5
)
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x2
)
cspthson
)
)
)
)
(
λ x5 .
co
(
cv
x3
)
(
cv
x4
)
(
co
(
cv
x1
)
(
cv
x2
)
cwwlksnon
)
)
)
)
)
⟶
wceq
cclwwlk
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
w3a
(
wne
(
cv
x2
)
c0
)
(
wral
(
λ x3 .
wcel
(
cpr
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
co
(
cv
x3
)
c1
caddc
)
(
cv
x2
)
)
)
(
cfv
(
cv
x1
)
cedg
)
)
(
λ x3 .
co
cc0
(
co
(
cfv
(
cv
x2
)
chash
)
c1
cmin
)
cfzo
)
)
(
wcel
(
cpr
(
cfv
(
cv
x2
)
clsw
)
(
cfv
cc0
(
cv
x2
)
)
)
(
cfv
(
cv
x1
)
cedg
)
)
)
(
λ x2 .
cword
(
cfv
(
cv
x1
)
cvtx
)
)
)
)
⟶
wceq
cclwwlkn
(
cmpt2
(
λ x1 x2 .
cn0
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
crab
(
λ x3 .
wceq
(
cfv
(
cv
x3
)
chash
)
(
cv
x1
)
)
(
λ x3 .
cfv
(
cv
x2
)
cclwwlk
)
)
)
⟶
wceq
cclwwlknold
(
cmpt2
(
λ x1 x2 .
cn
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
crab
(
λ x3 .
wceq
(
cfv
(
cv
x3
)
chash
)
(
cv
x1
)
)
(
λ x3 .
cfv
(
cv
x2
)
cclwwlk
)
)
)
⟶
wceq
cclwwlknon
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
cvtx
)
(
λ x2 x3 .
cn0
)
(
λ x2 x3 .
crab
(
λ x4 .
wceq
(
cfv
cc0
(
cv
x4
)
)
(
cv
x2
)
)
(
λ x4 .
co
(
cv
x3
)
(
cv
x1
)
cclwwlkn
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_trls
:
wceq
ctrls
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
copab
(
λ x1 x2 .
wa
(
wbr
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cwlks
)
)
(
wfun
(
ccnv
(
cv
x1
)
)
)
)
)
)
(proof)
Theorem
df_trlson
:
wceq
ctrlson
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cfv
(
cv
x0
)
cvtx
)
(
λ x1 x2 .
cfv
(
cv
x0
)
cvtx
)
(
λ x1 x2 .
copab
(
λ x3 x4 .
wa
(
wbr
(
cv
x3
)
(
cv
x4
)
(
co
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cwlkson
)
)
)
(
wbr
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x0
)
ctrls
)
)
)
)
)
)
(proof)
Theorem
df_pths
:
wceq
cpths
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
copab
(
λ x1 x2 .
w3a
(
wbr
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
ctrls
)
)
(
wfun
(
ccnv
(
cres
(
cv
x2
)
(
co
c1
(
cfv
(
cv
x1
)
chash
)
cfzo
)
)
)
)
(
wceq
(
cin
(
cima
(
cv
x2
)
(
cpr
cc0
(
cfv
(
cv
x1
)
chash
)
)
)
(
cima
(
cv
x2
)
(
co
c1
(
cfv
(
cv
x1
)
chash
)
cfzo
)
)
)
c0
)
)
)
)
(proof)
Theorem
df_spths
:
wceq
cspths
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
copab
(
λ x1 x2 .
wa
(
wbr
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
ctrls
)
)
(
wfun
(
ccnv
(
cv
x2
)
)
)
)
)
)
(proof)
Theorem
df_pthson
:
wceq
cpthson
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cfv
(
cv
x0
)
cvtx
)
(
λ x1 x2 .
cfv
(
cv
x0
)
cvtx
)
(
λ x1 x2 .
copab
(
λ x3 x4 .
wa
(
wbr
(
cv
x3
)
(
cv
x4
)
(
co
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
ctrlson
)
)
)
(
wbr
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x0
)
cpths
)
)
)
)
)
)
(proof)
Theorem
df_spthson
:
wceq
cspthson
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cfv
(
cv
x0
)
cvtx
)
(
λ x1 x2 .
cfv
(
cv
x0
)
cvtx
)
(
λ x1 x2 .
copab
(
λ x3 x4 .
wa
(
wbr
(
cv
x3
)
(
cv
x4
)
(
co
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
ctrlson
)
)
)
(
wbr
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x0
)
cspths
)
)
)
)
)
)
(proof)
Theorem
df_clwlks
:
wceq
cclwlks
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
copab
(
λ x1 x2 .
wa
(
wbr
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cwlks
)
)
(
wceq
(
cfv
cc0
(
cv
x2
)
)
(
cfv
(
cfv
(
cv
x1
)
chash
)
(
cv
x2
)
)
)
)
)
)
(proof)
Theorem
df_crcts
:
wceq
ccrcts
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
copab
(
λ x1 x2 .
wa
(
wbr
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
ctrls
)
)
(
wceq
(
cfv
cc0
(
cv
x2
)
)
(
cfv
(
cfv
(
cv
x1
)
chash
)
(
cv
x2
)
)
)
)
)
)
(proof)
Theorem
df_cycls
:
wceq
ccycls
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
copab
(
λ x1 x2 .
wa
(
wbr
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cpths
)
)
(
wceq
(
cfv
cc0
(
cv
x2
)
)
(
cfv
(
cfv
(
cv
x1
)
chash
)
(
cv
x2
)
)
)
)
)
)
(proof)
Theorem
df_wwlks
:
wceq
cwwlks
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wa
(
wne
(
cv
x1
)
c0
)
(
wral
(
λ x2 .
wcel
(
cpr
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cfv
(
co
(
cv
x2
)
c1
caddc
)
(
cv
x1
)
)
)
(
cfv
(
cv
x0
)
cedg
)
)
(
λ x2 .
co
cc0
(
co
(
cfv
(
cv
x1
)
chash
)
c1
cmin
)
cfzo
)
)
)
(
λ x1 .
cword
(
cfv
(
cv
x0
)
cvtx
)
)
)
)
(proof)
Theorem
df_wwlksn
:
wceq
cwwlksn
(
cmpt2
(
λ x0 x1 .
cn0
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
crab
(
λ x2 .
wceq
(
cfv
(
cv
x2
)
chash
)
(
co
(
cv
x0
)
c1
caddc
)
)
(
λ x2 .
cfv
(
cv
x1
)
cwwlks
)
)
)
(proof)
Theorem
df_wwlksnon
:
wceq
cwwlksnon
(
cmpt2
(
λ x0 x1 .
cn0
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
cvtx
)
(
λ x2 x3 .
cfv
(
cv
x1
)
cvtx
)
(
λ x2 x3 .
crab
(
λ x4 .
wa
(
wceq
(
cfv
cc0
(
cv
x4
)
)
(
cv
x2
)
)
(
wceq
(
cfv
(
cv
x0
)
(
cv
x4
)
)
(
cv
x3
)
)
)
(
λ x4 .
co
(
cv
x0
)
(
cv
x1
)
cwwlksn
)
)
)
)
(proof)
Theorem
df_wspthsn
:
wceq
cwwspthsn
(
cmpt2
(
λ x0 x1 .
cn0
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
crab
(
λ x2 .
wex
(
λ x3 .
wbr
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cspths
)
)
)
(
λ x2 .
co
(
cv
x0
)
(
cv
x1
)
cwwlksn
)
)
)
(proof)
Theorem
df_wspthsnon
:
wceq
cwwspthsnon
(
cmpt2
(
λ x0 x1 .
cn0
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
cvtx
)
(
λ x2 x3 .
cfv
(
cv
x1
)
cvtx
)
(
λ x2 x3 .
crab
(
λ x4 .
wex
(
λ x5 .
wbr
(
cv
x5
)
(
cv
x4
)
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cspthson
)
)
)
)
(
λ x4 .
co
(
cv
x2
)
(
cv
x3
)
(
co
(
cv
x0
)
(
cv
x1
)
cwwlksnon
)
)
)
)
)
(proof)
Theorem
df_clwwlk
:
wceq
cclwwlk
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
w3a
(
wne
(
cv
x1
)
c0
)
(
wral
(
λ x2 .
wcel
(
cpr
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cfv
(
co
(
cv
x2
)
c1
caddc
)
(
cv
x1
)
)
)
(
cfv
(
cv
x0
)
cedg
)
)
(
λ x2 .
co
cc0
(
co
(
cfv
(
cv
x1
)
chash
)
c1
cmin
)
cfzo
)
)
(
wcel
(
cpr
(
cfv
(
cv
x1
)
clsw
)
(
cfv
cc0
(
cv
x1
)
)
)
(
cfv
(
cv
x0
)
cedg
)
)
)
(
λ x1 .
cword
(
cfv
(
cv
x0
)
cvtx
)
)
)
)
(proof)
Theorem
df_clwwlkn
:
wceq
cclwwlkn
(
cmpt2
(
λ x0 x1 .
cn0
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
crab
(
λ x2 .
wceq
(
cfv
(
cv
x2
)
chash
)
(
cv
x0
)
)
(
λ x2 .
cfv
(
cv
x1
)
cclwwlk
)
)
)
(proof)
Theorem
df_clwwlknOLD
:
wceq
cclwwlknold
(
cmpt2
(
λ x0 x1 .
cn
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
crab
(
λ x2 .
wceq
(
cfv
(
cv
x2
)
chash
)
(
cv
x0
)
)
(
λ x2 .
cfv
(
cv
x1
)
cclwwlk
)
)
)
(proof)
Theorem
df_clwwlknon
:
wceq
cclwwlknon
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cfv
(
cv
x0
)
cvtx
)
(
λ x1 x2 .
cn0
)
(
λ x1 x2 .
crab
(
λ x3 .
wceq
(
cfv
cc0
(
cv
x3
)
)
(
cv
x1
)
)
(
λ x3 .
co
(
cv
x2
)
(
cv
x0
)
cclwwlkn
)
)
)
)
(proof)