Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrGdt..
/
1e4b7..
PUbSi..
/
448b6..
vout
PrGdt..
/
18b40..
0.10 bars
TMVvF..
/
ae6ae..
ownership of
e998b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUMY..
/
1eea3..
ownership of
07de5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZuR..
/
f3280..
ownership of
30f8c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEqj..
/
d95d7..
ownership of
c6579..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFBm..
/
a0712..
ownership of
b0254..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYvk..
/
c3cee..
ownership of
689e0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaEH..
/
4f7a5..
ownership of
3985e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYwZ..
/
98ef4..
ownership of
277cf..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHzB..
/
6bb3a..
ownership of
c1736..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHZv..
/
31d6f..
ownership of
e8b7f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFMQ..
/
61f99..
ownership of
e5aa7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTEi..
/
a5342..
ownership of
3ac9e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMDP..
/
cdb05..
ownership of
0a1d0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWPw..
/
d72cf..
ownership of
d439e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMamR..
/
339ce..
ownership of
370ad..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMa2x..
/
14314..
ownership of
e9fa3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJRM..
/
fab1c..
ownership of
ee27d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZLG..
/
4823a..
ownership of
e0875..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPWZ..
/
be5e9..
ownership of
acc05..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTdd..
/
b00b6..
ownership of
4a882..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWtY..
/
532fb..
ownership of
95a04..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVgY..
/
0414d..
ownership of
7c1fb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTLi..
/
a55cb..
ownership of
3baa4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbQ7..
/
b5b9f..
ownership of
a207c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUd5..
/
cf445..
ownership of
98f5a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGd2..
/
d534e..
ownership of
ba7e0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPXi..
/
55cc4..
ownership of
373f9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbyN..
/
b6ae1..
ownership of
dd057..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEv6..
/
76e45..
ownership of
994be..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbjb..
/
3e7ac..
ownership of
25ece..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJa1..
/
b231c..
ownership of
e1e8c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJP6..
/
6821b..
ownership of
b239e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaiq..
/
dd824..
ownership of
45b9b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMb1X..
/
5680b..
ownership of
e4e2c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUjd..
/
e0a3c..
ownership of
2655b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUZP..
/
0e86d..
ownership of
7e4c8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUUUJ..
/
df0b5..
doc published by
PrCmT..
Known
df_strset__df_bj_diag__df_bj_inftyexpi__df_bj_ccinfty__df_bj_ccbar__df_bj_pinfty__df_bj_minfty__df_bj_rrbar__df_bj_infty__df_bj_cchat__df_bj_rrhat__df_bj_addc__df_bj_oppc__df_bj_prcpal__df_bj_arg__df_bj_mulc__df_bj_invc__df_bj_finsum
:
∀ x0 : ο .
(
(
∀ x1 x2 x3 :
ι → ο
.
wceq
(
cstrset
x1
x2
x3
)
(
cun
(
cres
x3
(
cdif
cvv
(
csn
(
cfv
cnx
x1
)
)
)
)
(
csn
(
cop
(
cfv
cnx
x1
)
x2
)
)
)
)
⟶
wceq
cdiag2
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cin
cid
(
cxp
(
cv
x1
)
(
cv
x1
)
)
)
)
⟶
wceq
cinftyexpi
(
cmpt
(
λ x1 .
co
(
cneg
cpi
)
cpi
cioc
)
(
λ x1 .
cop
(
cv
x1
)
cc
)
)
⟶
wceq
cccinfty
(
crn
cinftyexpi
)
⟶
wceq
cccbar
(
cun
cc
cccinfty
)
⟶
wceq
cpinfty
(
cfv
cc0
cinftyexpi
)
⟶
wceq
cminfty
(
cfv
cpi
cinftyexpi
)
⟶
wceq
crrbar
(
cun
cr
(
cpr
cminfty
cpinfty
)
)
⟶
wceq
cinfty
(
cpw
(
cuni
cc
)
)
⟶
wceq
ccchat
(
cun
cc
(
csn
cinfty
)
)
⟶
wceq
crrhat
(
cun
cr
(
csn
cinfty
)
)
⟶
wceq
caddcc
(
cmpt
(
λ x1 .
cun
(
cun
(
cxp
cc
cccbar
)
(
cxp
cccbar
cc
)
)
(
cun
(
cxp
ccchat
ccchat
)
(
cfv
cccinfty
cdiag2
)
)
)
(
λ x1 .
cif
(
wo
(
wceq
(
cfv
(
cv
x1
)
c1st
)
cinfty
)
(
wceq
(
cfv
(
cv
x1
)
c2nd
)
cinfty
)
)
cinfty
(
cif
(
wcel
(
cfv
(
cv
x1
)
c1st
)
cc
)
(
cif
(
wcel
(
cfv
(
cv
x1
)
c2nd
)
cc
)
(
co
(
cfv
(
cv
x1
)
c1st
)
(
cfv
(
cv
x1
)
c2nd
)
caddc
)
(
cfv
(
cv
x1
)
c2nd
)
)
(
cfv
(
cv
x1
)
c1st
)
)
)
)
⟶
wceq
coppcc
(
cmpt
(
λ x1 .
cun
cccbar
ccchat
)
(
λ x1 .
cif
(
wceq
(
cv
x1
)
cinfty
)
cinfty
(
cif
(
wcel
(
cv
x1
)
cc
)
(
cneg
(
cv
x1
)
)
(
cfv
(
cif
(
wbr
cc0
(
cfv
(
cv
x1
)
c1st
)
clt
)
(
co
(
cfv
(
cv
x1
)
c1st
)
cpi
cmin
)
(
co
(
cfv
(
cv
x1
)
c1st
)
cpi
caddc
)
)
cinftyexpi
)
)
)
)
⟶
wceq
cprcpal
(
cmpt
(
λ x1 .
cr
)
(
λ x1 .
co
(
co
(
cv
x1
)
(
co
c2
cpi
cmul
)
cmo
)
(
cif
(
wbr
(
co
(
cv
x1
)
(
co
c2
cpi
cmul
)
cmo
)
cpi
cle
)
cc0
(
co
c2
cpi
cmul
)
)
cmin
)
)
⟶
wceq
carg
(
cmpt
(
λ x1 .
cdif
cccbar
(
csn
cc0
)
)
(
λ x1 .
cif
(
wcel
(
cv
x1
)
cc
)
(
cfv
(
cfv
(
cv
x1
)
clog
)
cim
)
(
cfv
(
cv
x1
)
c1st
)
)
)
⟶
wceq
cmulc
(
cmpt
(
λ x1 .
cun
(
cxp
cccbar
cccbar
)
(
cxp
ccchat
ccchat
)
)
(
λ x1 .
cif
(
wo
(
wceq
(
cfv
(
cv
x1
)
c1st
)
cc0
)
(
wceq
(
cfv
(
cv
x1
)
c2nd
)
cc0
)
)
cc0
(
cif
(
wo
(
wceq
(
cfv
(
cv
x1
)
c1st
)
cinfty
)
(
wceq
(
cfv
(
cv
x1
)
c2nd
)
cinfty
)
)
cinfty
(
cif
(
wcel
(
cv
x1
)
(
cxp
cc
cc
)
)
(
co
(
cfv
(
cv
x1
)
c1st
)
(
cfv
(
cv
x1
)
c2nd
)
cmul
)
(
cfv
(
cfv
(
co
(
cfv
(
cfv
(
cv
x1
)
c1st
)
carg
)
(
cfv
(
cfv
(
cv
x1
)
c2nd
)
carg
)
caddc
)
cprcpal
)
cinftyexpi
)
)
)
)
)
⟶
wceq
cinvc
(
cmpt
(
λ x1 .
cun
cccbar
ccchat
)
(
λ x1 .
cif
(
wceq
(
cv
x1
)
cc0
)
cinfty
(
cif
(
wcel
(
cv
x1
)
cc
)
(
co
c1
(
cv
x1
)
cdiv
)
cc0
)
)
)
⟶
wceq
cfinsum
(
cmpt
(
λ x1 .
copab
(
λ x2 x3 .
wa
(
wcel
(
cv
x2
)
ccmn
)
(
wrex
(
λ x4 .
wf
(
cv
x4
)
(
cfv
(
cv
x2
)
cbs
)
(
cv
x3
)
)
(
λ x4 .
cfn
)
)
)
)
(
λ x1 .
cio
(
λ x2 .
wrex
(
λ x3 .
wex
(
λ x4 .
wa
(
wf1o
(
co
c1
(
cv
x3
)
cfz
)
(
cdm
(
cfv
(
cv
x1
)
c2nd
)
)
(
cv
x4
)
)
(
wceq
(
cv
x2
)
(
cfv
(
cv
x3
)
(
cseq
(
cfv
(
cfv
(
cv
x1
)
c1st
)
cplusg
)
(
cmpt
(
λ x5 .
cn
)
(
λ x5 .
cfv
(
cfv
(
cv
x5
)
(
cv
x4
)
)
(
cfv
(
cv
x1
)
c2nd
)
)
)
c1
)
)
)
)
)
(
λ x3 .
cn0
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_strset
:
∀ x0 x1 x2 :
ι → ο
.
wceq
(
cstrset
x0
x1
x2
)
(
cun
(
cres
x2
(
cdif
cvv
(
csn
(
cfv
cnx
x0
)
)
)
)
(
csn
(
cop
(
cfv
cnx
x0
)
x1
)
)
)
(proof)
Theorem
df_bj_diag
:
wceq
cdiag2
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cin
cid
(
cxp
(
cv
x0
)
(
cv
x0
)
)
)
)
(proof)
Theorem
df_bj_inftyexpi
:
wceq
cinftyexpi
(
cmpt
(
λ x0 .
co
(
cneg
cpi
)
cpi
cioc
)
(
λ x0 .
cop
(
cv
x0
)
cc
)
)
(proof)
Theorem
df_bj_ccinfty
:
wceq
cccinfty
(
crn
cinftyexpi
)
(proof)
Theorem
df_bj_ccbar
:
wceq
cccbar
(
cun
cc
cccinfty
)
(proof)
Theorem
df_bj_pinfty
:
wceq
cpinfty
(
cfv
cc0
cinftyexpi
)
(proof)
Theorem
df_bj_minfty
:
wceq
cminfty
(
cfv
cpi
cinftyexpi
)
(proof)
Theorem
df_bj_rrbar
:
wceq
crrbar
(
cun
cr
(
cpr
cminfty
cpinfty
)
)
(proof)
Theorem
df_bj_infty
:
wceq
cinfty
(
cpw
(
cuni
cc
)
)
(proof)
Theorem
df_bj_cchat
:
wceq
ccchat
(
cun
cc
(
csn
cinfty
)
)
(proof)
Theorem
df_bj_rrhat
:
wceq
crrhat
(
cun
cr
(
csn
cinfty
)
)
(proof)
Theorem
df_bj_addc
:
wceq
caddcc
(
cmpt
(
λ x0 .
cun
(
cun
(
cxp
cc
cccbar
)
(
cxp
cccbar
cc
)
)
(
cun
(
cxp
ccchat
ccchat
)
(
cfv
cccinfty
cdiag2
)
)
)
(
λ x0 .
cif
(
wo
(
wceq
(
cfv
(
cv
x0
)
c1st
)
cinfty
)
(
wceq
(
cfv
(
cv
x0
)
c2nd
)
cinfty
)
)
cinfty
(
cif
(
wcel
(
cfv
(
cv
x0
)
c1st
)
cc
)
(
cif
(
wcel
(
cfv
(
cv
x0
)
c2nd
)
cc
)
(
co
(
cfv
(
cv
x0
)
c1st
)
(
cfv
(
cv
x0
)
c2nd
)
caddc
)
(
cfv
(
cv
x0
)
c2nd
)
)
(
cfv
(
cv
x0
)
c1st
)
)
)
)
(proof)
Theorem
df_bj_oppc
:
wceq
coppcc
(
cmpt
(
λ x0 .
cun
cccbar
ccchat
)
(
λ x0 .
cif
(
wceq
(
cv
x0
)
cinfty
)
cinfty
(
cif
(
wcel
(
cv
x0
)
cc
)
(
cneg
(
cv
x0
)
)
(
cfv
(
cif
(
wbr
cc0
(
cfv
(
cv
x0
)
c1st
)
clt
)
(
co
(
cfv
(
cv
x0
)
c1st
)
cpi
cmin
)
(
co
(
cfv
(
cv
x0
)
c1st
)
cpi
caddc
)
)
cinftyexpi
)
)
)
)
(proof)
Theorem
df_bj_prcpal
:
wceq
cprcpal
(
cmpt
(
λ x0 .
cr
)
(
λ x0 .
co
(
co
(
cv
x0
)
(
co
c2
cpi
cmul
)
cmo
)
(
cif
(
wbr
(
co
(
cv
x0
)
(
co
c2
cpi
cmul
)
cmo
)
cpi
cle
)
cc0
(
co
c2
cpi
cmul
)
)
cmin
)
)
(proof)
Theorem
df_bj_arg
:
wceq
carg
(
cmpt
(
λ x0 .
cdif
cccbar
(
csn
cc0
)
)
(
λ x0 .
cif
(
wcel
(
cv
x0
)
cc
)
(
cfv
(
cfv
(
cv
x0
)
clog
)
cim
)
(
cfv
(
cv
x0
)
c1st
)
)
)
(proof)
Theorem
df_bj_mulc
:
wceq
cmulc
(
cmpt
(
λ x0 .
cun
(
cxp
cccbar
cccbar
)
(
cxp
ccchat
ccchat
)
)
(
λ x0 .
cif
(
wo
(
wceq
(
cfv
(
cv
x0
)
c1st
)
cc0
)
(
wceq
(
cfv
(
cv
x0
)
c2nd
)
cc0
)
)
cc0
(
cif
(
wo
(
wceq
(
cfv
(
cv
x0
)
c1st
)
cinfty
)
(
wceq
(
cfv
(
cv
x0
)
c2nd
)
cinfty
)
)
cinfty
(
cif
(
wcel
(
cv
x0
)
(
cxp
cc
cc
)
)
(
co
(
cfv
(
cv
x0
)
c1st
)
(
cfv
(
cv
x0
)
c2nd
)
cmul
)
(
cfv
(
cfv
(
co
(
cfv
(
cfv
(
cv
x0
)
c1st
)
carg
)
(
cfv
(
cfv
(
cv
x0
)
c2nd
)
carg
)
caddc
)
cprcpal
)
cinftyexpi
)
)
)
)
)
(proof)
Theorem
df_bj_invc
:
wceq
cinvc
(
cmpt
(
λ x0 .
cun
cccbar
ccchat
)
(
λ x0 .
cif
(
wceq
(
cv
x0
)
cc0
)
cinfty
(
cif
(
wcel
(
cv
x0
)
cc
)
(
co
c1
(
cv
x0
)
cdiv
)
cc0
)
)
)
(proof)
Theorem
df_bj_finsum
:
wceq
cfinsum
(
cmpt
(
λ x0 .
copab
(
λ x1 x2 .
wa
(
wcel
(
cv
x1
)
ccmn
)
(
wrex
(
λ x3 .
wf
(
cv
x3
)
(
cfv
(
cv
x1
)
cbs
)
(
cv
x2
)
)
(
λ x3 .
cfn
)
)
)
)
(
λ x0 .
cio
(
λ x1 .
wrex
(
λ x2 .
wex
(
λ x3 .
wa
(
wf1o
(
co
c1
(
cv
x2
)
cfz
)
(
cdm
(
cfv
(
cv
x0
)
c2nd
)
)
(
cv
x3
)
)
(
wceq
(
cv
x1
)
(
cfv
(
cv
x2
)
(
cseq
(
cfv
(
cfv
(
cv
x0
)
c1st
)
cplusg
)
(
cmpt
(
λ x4 .
cn
)
(
λ x4 .
cfv
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cv
x0
)
c2nd
)
)
)
c1
)
)
)
)
)
(
λ x2 .
cn0
)
)
)
)
(proof)