Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrPP6..
/
d5c28..
PUhmU..
/
edd8e..
vout
PrPP6..
/
5dd1c..
0.00 bars
TMSvi..
/
cfb2d..
ownership of
a4145..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMakC..
/
5bd85..
ownership of
98982..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTwh..
/
2d10f..
ownership of
67b67..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFaR..
/
2f881..
ownership of
68192..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMK5u..
/
63543..
ownership of
461e0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdAo..
/
c0286..
ownership of
90c83..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMR8r..
/
cc417..
ownership of
b5a4f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMR2V..
/
5bd2d..
ownership of
012ca..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSRM..
/
4e6c6..
ownership of
e511b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQmr..
/
a8c3b..
ownership of
f2757..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTJs..
/
5a019..
ownership of
cdfc5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMEgn..
/
fde8d..
ownership of
edda2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVgQ..
/
5f15b..
ownership of
44d9a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVPN..
/
3ab59..
ownership of
54840..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUcZ..
/
da6e6..
ownership of
0ae27..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMa4f..
/
a051b..
ownership of
020ff..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLbW..
/
e6896..
ownership of
259f6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJtW..
/
90d32..
ownership of
ac2d5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSKa..
/
945af..
ownership of
1c6bf..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLPP..
/
c46e5..
ownership of
95eba..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVWz..
/
1d5cb..
ownership of
e12a0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMM9o..
/
facda..
ownership of
a5dfc..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdHr..
/
74419..
ownership of
b0df2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGL1..
/
3eb2f..
ownership of
1ccf7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFJW..
/
e4646..
ownership of
38cca..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcgC..
/
1f6ea..
ownership of
8ab18..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMT4e..
/
2e680..
ownership of
fdf51..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTjm..
/
281bf..
ownership of
96798..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PULFy..
/
948ae..
doc published by
PrGxv..
Param
explicit_Ring_with_id
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
explicit_Ring_with_id_I
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x3
x5
x6
)
x0
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x5
(
x3
x6
x7
)
=
x3
(
x3
x5
x6
)
x7
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x5
x6
=
x3
x6
x5
)
⟶
prim1
x1
x0
⟶
(
∀ x5 .
prim1
x5
x0
⟶
x3
x1
x5
=
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
prim1
x7
x0
)
(
x3
x5
x7
=
x1
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x4
x5
x6
)
x0
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x5
(
x4
x6
x7
)
=
x4
(
x4
x5
x6
)
x7
)
⟶
prim1
x2
x0
⟶
(
x2
=
x1
⟶
∀ x5 : ο .
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
x4
x2
x5
=
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
x4
x5
x2
=
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x5
(
x3
x6
x7
)
=
x3
(
x4
x5
x6
)
(
x4
x5
x7
)
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
(
x3
x5
x6
)
x7
=
x3
(
x4
x5
x7
)
(
x4
x6
x7
)
)
⟶
explicit_Ring_with_id
x0
x1
x2
x3
x4
Known
explicit_Ring_with_id_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 : ο .
(
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
prim1
(
x3
x6
x7
)
x0
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x3
x6
(
x3
x7
x8
)
=
x3
(
x3
x6
x7
)
x8
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x6
x7
=
x3
x7
x6
)
⟶
prim1
x1
x0
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x3
x1
x6
=
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
prim1
x8
x0
)
(
x3
x6
x8
=
x1
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
prim1
(
x4
x6
x7
)
x0
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x6
(
x4
x7
x8
)
=
x4
(
x4
x6
x7
)
x8
)
⟶
prim1
x2
x0
⟶
(
x2
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x4
x2
x6
=
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x4
x6
x2
=
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x6
(
x3
x7
x8
)
=
x3
(
x4
x6
x7
)
(
x4
x6
x8
)
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
(
x3
x6
x7
)
x8
=
x3
(
x4
x6
x8
)
(
x4
x7
x8
)
)
⟶
x5
)
⟶
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
x5
Param
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
explicit_Ring_with_id_exp_nat
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 .
nat_primrec
x2
(
λ x6 .
x4
x5
)
Param
f482f..
:
ι
→
ι
→
ι
Definition
fdf51..
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 x6 x7 .
nat_primrec
x1
(
λ x8 .
x3
(
x4
(
f482f..
x6
x8
)
(
explicit_Ring_with_id_exp_nat
x0
x1
x2
x3
x4
x7
x8
)
)
)
x5
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
b0df2..
:
∀ x0 x1 x2 .
∀ x3 x4 x5 x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x3
x7
x8
=
x5
x7
x8
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x7
x8
=
x6
x7
x8
)
⟶
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
explicit_Ring_with_id
x0
x1
x2
x5
x6
(proof)
Param
iff
:
ο
→
ο
→
ο
Known
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Theorem
explicit_Ring_with_id_repindep
:
∀ x0 x1 x2 .
∀ x3 x4 x5 x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x3
x7
x8
=
x5
x7
x8
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x7
x8
=
x6
x7
x8
)
⟶
iff
(
explicit_Ring_with_id
x0
x1
x2
x3
x4
)
(
explicit_Ring_with_id
x0
x1
x2
x5
x6
)
(proof)
Param
explicit_CRing_with_id
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Known
explicit_CRing_with_id_I
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x3
x5
x6
)
x0
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x5
(
x3
x6
x7
)
=
x3
(
x3
x5
x6
)
x7
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x5
x6
=
x3
x6
x5
)
⟶
prim1
x1
x0
⟶
(
∀ x5 .
prim1
x5
x0
⟶
x3
x1
x5
=
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
prim1
x7
x0
)
(
x3
x5
x7
=
x1
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x4
x5
x6
)
x0
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x5
(
x4
x6
x7
)
=
x4
(
x4
x5
x6
)
x7
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x4
x5
x6
=
x4
x6
x5
)
⟶
prim1
x2
x0
⟶
(
x2
=
x1
⟶
∀ x5 : ο .
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
x4
x2
x5
=
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x5
(
x3
x6
x7
)
=
x3
(
x4
x5
x6
)
(
x4
x5
x7
)
)
⟶
explicit_CRing_with_id
x0
x1
x2
x3
x4
Known
explicit_CRing_with_id_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 : ο .
(
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
prim1
(
x3
x6
x7
)
x0
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x3
x6
(
x3
x7
x8
)
=
x3
(
x3
x6
x7
)
x8
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x6
x7
=
x3
x7
x6
)
⟶
prim1
x1
x0
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x3
x1
x6
=
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
prim1
x8
x0
)
(
x3
x6
x8
=
x1
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
prim1
(
x4
x6
x7
)
x0
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x6
(
x4
x7
x8
)
=
x4
(
x4
x6
x7
)
x8
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
prim1
x2
x0
⟶
(
x2
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x4
x2
x6
=
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x6
(
x3
x7
x8
)
=
x3
(
x4
x6
x7
)
(
x4
x6
x8
)
)
⟶
x5
)
⟶
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
x5
Theorem
1c6bf..
:
∀ x0 x1 x2 .
∀ x3 x4 x5 x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x3
x7
x8
=
x5
x7
x8
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x7
x8
=
x6
x7
x8
)
⟶
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
explicit_CRing_with_id
x0
x1
x2
x5
x6
(proof)
Theorem
explicit_CRing_with_id_repindep
:
∀ x0 x1 x2 .
∀ x3 x4 x5 x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x3
x7
x8
=
x5
x7
x8
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x7
x8
=
x6
x7
x8
)
⟶
iff
(
explicit_CRing_with_id
x0
x1
x2
x3
x4
)
(
explicit_CRing_with_id
x0
x1
x2
x5
x6
)
(proof)
Param
explicit_Field
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Known
explicit_Field_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 : ο .
(
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
prim1
(
x3
x6
x7
)
x0
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x3
x6
(
x3
x7
x8
)
=
x3
(
x3
x6
x7
)
x8
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x6
x7
=
x3
x7
x6
)
⟶
prim1
x1
x0
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x3
x1
x6
=
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
prim1
x8
x0
)
(
x3
x6
x8
=
x1
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
prim1
(
x4
x6
x7
)
x0
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x6
(
x4
x7
x8
)
=
x4
(
x4
x6
x7
)
x8
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
prim1
x2
x0
⟶
(
x2
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x4
x2
x6
=
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
(
x6
=
x1
⟶
∀ x7 : ο .
x7
)
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
prim1
x8
x0
)
(
x4
x6
x8
=
x2
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x6
(
x3
x7
x8
)
=
x3
(
x4
x6
x7
)
(
x4
x6
x8
)
)
⟶
x5
)
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
x5
Known
explicit_Field_I
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x3
x5
x6
)
x0
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x5
(
x3
x6
x7
)
=
x3
(
x3
x5
x6
)
x7
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x5
x6
=
x3
x6
x5
)
⟶
prim1
x1
x0
⟶
(
∀ x5 .
prim1
x5
x0
⟶
x3
x1
x5
=
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
prim1
x7
x0
)
(
x3
x5
x7
=
x1
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x4
x5
x6
)
x0
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x5
(
x4
x6
x7
)
=
x4
(
x4
x5
x6
)
x7
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x4
x5
x6
=
x4
x6
x5
)
⟶
prim1
x2
x0
⟶
(
x2
=
x1
⟶
∀ x5 : ο .
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
x4
x2
x5
=
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
(
x5
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
prim1
x7
x0
)
(
x4
x5
x7
=
x2
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x5
(
x3
x6
x7
)
=
x3
(
x4
x5
x6
)
(
x4
x5
x7
)
)
⟶
explicit_Field
x0
x1
x2
x3
x4
Theorem
0ae27..
:
∀ x0 x1 x2 .
∀ x3 x4 x5 x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x3
x7
x8
=
x5
x7
x8
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x7
x8
=
x6
x7
x8
)
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
explicit_Field
x0
x1
x2
x5
x6
(proof)
Theorem
explicit_Field_repindep
:
∀ x0 x1 x2 .
∀ x3 x4 x5 x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x3
x7
x8
=
x5
x7
x8
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x7
x8
=
x6
x7
x8
)
⟶
iff
(
explicit_Field
x0
x1
x2
x3
x4
)
(
explicit_Field
x0
x1
x2
x5
x6
)
(proof)
Theorem
cdfc5..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
explicit_CRing_with_id
x0
x1
x2
x3
x4
(proof)
Param
c77b5..
:
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
Definition
3f0d0..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x3
x4
x5
)
x2
)
⟶
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x4
x5
x6
)
x2
)
⟶
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
x1
(
c77b5..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Param
c3510..
:
ι
→
(
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
→
ο
) →
ο
Known
24f4f..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ο
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
x0
x1
x6
x7
x4
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
c3510..
(
c77b5..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
Definition
d7e73..
:=
λ x0 .
and
(
3f0d0..
x0
)
(
c3510..
x0
(
λ x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 x5 .
explicit_Ring_with_id
x1
x4
x5
x2
x3
)
)
Known
prop_ext
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
=
x1
Theorem
e511b..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
c3510..
(
c77b5..
x0
x1
x2
x3
x4
)
(
λ x6 .
λ x7 x8 :
ι →
ι → ι
.
λ x9 x10 .
explicit_Ring_with_id
x6
x9
x10
x7
x8
)
=
explicit_Ring_with_id
x0
x3
x4
x1
x2
(proof)
Definition
dac20..
:=
λ x0 .
and
(
3f0d0..
x0
)
(
c3510..
x0
(
λ x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 x5 .
explicit_CRing_with_id
x1
x4
x5
x2
x3
)
)
Theorem
b5a4f..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
c3510..
(
c77b5..
x0
x1
x2
x3
x4
)
(
λ x6 .
λ x7 x8 :
ι →
ι → ι
.
λ x9 x10 .
explicit_CRing_with_id
x6
x9
x10
x7
x8
)
=
explicit_CRing_with_id
x0
x3
x4
x1
x2
(proof)
Definition
38cca..
:=
λ x0 .
and
(
3f0d0..
x0
)
(
c3510..
x0
(
λ x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 x5 .
explicit_Field
x1
x4
x5
x2
x3
)
)
Theorem
461e0..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
c3510..
(
c77b5..
x0
x1
x2
x3
x4
)
(
λ x6 .
λ x7 x8 :
ι →
ι → ι
.
λ x9 x10 .
explicit_Field
x6
x9
x10
x7
x8
)
=
explicit_Field
x0
x3
x4
x1
x2
(proof)
Known
explicit_CRing_with_id_Ring_with_id
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
explicit_Ring_with_id
x0
x1
x2
x3
x4
Theorem
67b67..
:
∀ x0 .
dac20..
x0
⟶
d7e73..
x0
(proof)
Theorem
a4145..
:
∀ x0 .
38cca..
x0
⟶
dac20..
x0
(proof)