λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . and (and (and (and (and (and (and (and (and (and (and (and (and (∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ prim1 (x3 x5 x6) x0) (∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ ∀ x7 . prim1 x7 x0 ⟶ x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7)) (∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ x3 x5 x6 = x3 x6 x5)) (prim1 x1 x0)) (∀ x5 . prim1 x5 x0 ⟶ x3 x1 x5 = x5)) (∀ x5 . prim1 x5 x0 ⟶ ∀ x6 : ο . (∀ x7 . and (prim1 x7 x0) (x3 x5 x7 = x1) ⟶ x6) ⟶ x6)) (∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ prim1 (x4 x5 x6) x0)) (∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ ∀ x7 . prim1 x7 x0 ⟶ x4 x5 (x4 x6 x7) = x4 (x4 x5 x6) x7)) (prim1 x2 x0)) (x2 = x1 ⟶ ∀ x5 : ο . x5)) (∀ x5 . prim1 x5 x0 ⟶ x4 x2 x5 = x5)) (∀ x5 . prim1 x5 x0 ⟶ x4 x5 x2 = x5)) (∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ ∀ x7 . prim1 x7 x0 ⟶ x4 x5 (x3 x6 x7) = x3 (x4 x5 x6) (x4 x5 x7))) (∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ ∀ x7 . prim1 x7 x0 ⟶ x4 (x3 x5 x6) x7 = x3 (x4 x5 x7) (x4 x6 x7)) |
|
type |
---|
ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → ο |
|
|
name |
---|
explicit_Ring_with_id |
|
|
|
|
|
|
|