Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrDV8..
/
f594c..
PULs9..
/
b9c6f..
vout
PrDV8..
/
23dc0..
0.08 bars
TMTmt..
/
88573..
ownership of
6d5c6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRoV..
/
acc36..
ownership of
71c28..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaVw..
/
14874..
ownership of
62df7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXi5..
/
6b304..
ownership of
97950..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbKY..
/
e9716..
ownership of
2245e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdrS..
/
1684d..
ownership of
b908d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMH4z..
/
fdd6b..
ownership of
6f04b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcmi..
/
722db..
ownership of
36c86..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcHf..
/
26999..
ownership of
9f944..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTTV..
/
621a2..
ownership of
cb0cb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZgf..
/
ec137..
ownership of
66b9f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHHx..
/
96cec..
ownership of
f7c87..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMT2H..
/
d8df6..
ownership of
0616e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLHX..
/
2aef4..
ownership of
3a18d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFMR..
/
07592..
ownership of
76051..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLRU..
/
43209..
ownership of
1005c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXTJ..
/
c84f7..
ownership of
75454..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFKe..
/
8b4d2..
ownership of
899e2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZBh..
/
14a82..
ownership of
4ff41..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNLP..
/
c5c77..
ownership of
7a217..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYms..
/
78659..
ownership of
37eec..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaNx..
/
2ab94..
ownership of
22981..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMH5P..
/
b3b2f..
ownership of
60400..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMe17..
/
88d25..
ownership of
7b820..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTa6..
/
6cd52..
ownership of
f875a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNoJ..
/
fde44..
ownership of
2b90a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFFB..
/
05754..
ownership of
d0731..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGvm..
/
f8135..
ownership of
29e90..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNet..
/
cf656..
ownership of
15f43..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQb2..
/
ba439..
ownership of
34085..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTsY..
/
002a5..
ownership of
f7a86..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGSa..
/
91cb9..
ownership of
55394..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMW7..
/
ee885..
ownership of
b9538..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRkW..
/
930c8..
ownership of
e970a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcCa..
/
1452a..
ownership of
ab8c0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSPA..
/
ba654..
ownership of
ee1dd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUWCs..
/
97e38..
doc published by
PrCmT..
Known
df_rtrcl__df_relexp__df_rtrclrec__df_shft__df_sgn__df_cj__df_re__df_im__df_sqrt__df_abs__df_limsup__df_clim__df_rlim__df_o1__df_lo1__df_sum__df_prod__df_risefac
:
∀ x0 : ο .
(
wceq
crtcl
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cint
(
cab
(
λ x2 .
w3a
(
wss
(
cres
cid
(
cun
(
cdm
(
cv
x1
)
)
(
crn
(
cv
x1
)
)
)
)
(
cv
x2
)
)
(
wss
(
cv
x1
)
(
cv
x2
)
)
(
wss
(
ccom
(
cv
x2
)
(
cv
x2
)
)
(
cv
x2
)
)
)
)
)
)
⟶
wceq
crelexp
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cn0
)
(
λ x1 x2 .
cif
(
wceq
(
cv
x2
)
cc0
)
(
cres
cid
(
cun
(
cdm
(
cv
x1
)
)
(
crn
(
cv
x1
)
)
)
)
(
cfv
(
cv
x2
)
(
cseq
(
cmpt2
(
λ x3 x4 .
cvv
)
(
λ x3 x4 .
cvv
)
(
λ x3 x4 .
ccom
(
cv
x3
)
(
cv
x1
)
)
)
(
cmpt
(
λ x3 .
cvv
)
(
λ x3 .
cv
x1
)
)
c1
)
)
)
)
⟶
wceq
crtrcl
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
ciun
(
λ x2 .
cn0
)
(
λ x2 .
co
(
cv
x1
)
(
cv
x2
)
crelexp
)
)
)
⟶
wceq
cshi
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cc
)
(
λ x1 x2 .
copab
(
λ x3 x4 .
wa
(
wcel
(
cv
x3
)
cc
)
(
wbr
(
co
(
cv
x3
)
(
cv
x2
)
cmin
)
(
cv
x4
)
(
cv
x1
)
)
)
)
)
⟶
wceq
csgn
(
cmpt
(
λ x1 .
cxr
)
(
λ x1 .
cif
(
wceq
(
cv
x1
)
cc0
)
cc0
(
cif
(
wbr
(
cv
x1
)
cc0
clt
)
(
cneg
c1
)
c1
)
)
)
⟶
wceq
ccj
(
cmpt
(
λ x1 .
cc
)
(
λ x1 .
crio
(
λ x2 .
wa
(
wcel
(
co
(
cv
x1
)
(
cv
x2
)
caddc
)
cr
)
(
wcel
(
co
ci
(
co
(
cv
x1
)
(
cv
x2
)
cmin
)
cmul
)
cr
)
)
(
λ x2 .
cc
)
)
)
⟶
wceq
cre
(
cmpt
(
λ x1 .
cc
)
(
λ x1 .
co
(
co
(
cv
x1
)
(
cfv
(
cv
x1
)
ccj
)
caddc
)
c2
cdiv
)
)
⟶
wceq
cim
(
cmpt
(
λ x1 .
cc
)
(
λ x1 .
cfv
(
co
(
cv
x1
)
ci
cdiv
)
cre
)
)
⟶
wceq
csqrt
(
cmpt
(
λ x1 .
cc
)
(
λ x1 .
crio
(
λ x2 .
w3a
(
wceq
(
co
(
cv
x2
)
c2
cexp
)
(
cv
x1
)
)
(
wbr
cc0
(
cfv
(
cv
x2
)
cre
)
cle
)
(
wnel
(
co
ci
(
cv
x2
)
cmul
)
crp
)
)
(
λ x2 .
cc
)
)
)
⟶
wceq
cabs
(
cmpt
(
λ x1 .
cc
)
(
λ x1 .
cfv
(
co
(
cv
x1
)
(
cfv
(
cv
x1
)
ccj
)
cmul
)
csqrt
)
)
⟶
wceq
clsp
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cinf
(
crn
(
cmpt
(
λ x2 .
cr
)
(
λ x2 .
csup
(
cin
(
cima
(
cv
x1
)
(
co
(
cv
x2
)
cpnf
cico
)
)
cxr
)
cxr
clt
)
)
)
cxr
clt
)
)
⟶
wceq
cli
(
copab
(
λ x1 x2 .
wa
(
wcel
(
cv
x2
)
cc
)
(
wral
(
λ x3 .
wrex
(
λ x4 .
wral
(
λ x5 .
wa
(
wcel
(
cfv
(
cv
x5
)
(
cv
x1
)
)
cc
)
(
wbr
(
cfv
(
co
(
cfv
(
cv
x5
)
(
cv
x1
)
)
(
cv
x2
)
cmin
)
cabs
)
(
cv
x3
)
clt
)
)
(
λ x5 .
cfv
(
cv
x4
)
cuz
)
)
(
λ x4 .
cz
)
)
(
λ x3 .
crp
)
)
)
)
⟶
wceq
crli
(
copab
(
λ x1 x2 .
wa
(
wa
(
wcel
(
cv
x1
)
(
co
cc
cr
cpm
)
)
(
wcel
(
cv
x2
)
cc
)
)
(
wral
(
λ x3 .
wrex
(
λ x4 .
wral
(
λ x5 .
wbr
(
cv
x4
)
(
cv
x5
)
cle
⟶
wbr
(
cfv
(
co
(
cfv
(
cv
x5
)
(
cv
x1
)
)
(
cv
x2
)
cmin
)
cabs
)
(
cv
x3
)
clt
)
(
λ x5 .
cdm
(
cv
x1
)
)
)
(
λ x4 .
cr
)
)
(
λ x3 .
crp
)
)
)
)
⟶
wceq
co1
(
crab
(
λ x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
wral
(
λ x4 .
wbr
(
cfv
(
cfv
(
cv
x4
)
(
cv
x1
)
)
cabs
)
(
cv
x3
)
cle
)
(
λ x4 .
cin
(
cdm
(
cv
x1
)
)
(
co
(
cv
x2
)
cpnf
cico
)
)
)
(
λ x3 .
cr
)
)
(
λ x2 .
cr
)
)
(
λ x1 .
co
cc
cr
cpm
)
)
⟶
wceq
clo1
(
crab
(
λ x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
wral
(
λ x4 .
wbr
(
cfv
(
cv
x4
)
(
cv
x1
)
)
(
cv
x3
)
cle
)
(
λ x4 .
cin
(
cdm
(
cv
x1
)
)
(
co
(
cv
x2
)
cpnf
cico
)
)
)
(
λ x3 .
cr
)
)
(
λ x2 .
cr
)
)
(
λ x1 .
co
cr
cr
cpm
)
)
⟶
(
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 .
wceq
(
csu
(
x1
x3
)
x2
)
(
cio
(
λ x4 .
wo
(
wrex
(
λ x5 .
wa
(
wss
(
x1
x3
)
(
cfv
(
cv
x5
)
cuz
)
)
(
wbr
(
cseq
caddc
(
cmpt
(
λ x6 .
cz
)
(
λ x6 .
cif
(
wcel
(
cv
x6
)
(
x1
x3
)
)
(
csb
(
cv
x6
)
x2
)
cc0
)
)
(
cv
x5
)
)
(
cv
x4
)
cli
)
)
(
λ x5 .
cz
)
)
(
wrex
(
λ x5 .
wex
(
λ x6 .
wa
(
wf1o
(
co
c1
(
cv
x5
)
cfz
)
(
x1
x3
)
(
cv
x6
)
)
(
wceq
(
cv
x4
)
(
cfv
(
cv
x5
)
(
cseq
caddc
(
cmpt
(
λ x7 .
cn
)
(
λ x7 .
csb
(
cfv
(
cv
x7
)
(
cv
x6
)
)
x2
)
)
c1
)
)
)
)
)
(
λ x5 .
cn
)
)
)
)
)
⟶
(
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 .
wceq
(
cprod
x1
x2
)
(
cio
(
λ x4 .
wo
(
wrex
(
λ x5 .
w3a
(
wss
(
x1
x3
)
(
cfv
(
cv
x5
)
cuz
)
)
(
wrex
(
λ x6 .
wex
(
λ x7 .
wa
(
wne
(
cv
x7
)
cc0
)
(
wbr
(
cseq
cmul
(
cmpt
(
λ x8 .
cz
)
(
λ x8 .
cif
(
wcel
(
cv
x8
)
(
x1
x8
)
)
(
x2
x8
)
c1
)
)
(
cv
x6
)
)
(
cv
x7
)
cli
)
)
)
(
λ x6 .
cfv
(
cv
x5
)
cuz
)
)
(
wbr
(
cseq
cmul
(
cmpt
(
λ x6 .
cz
)
(
λ x6 .
cif
(
wcel
(
cv
x6
)
(
x1
x6
)
)
(
x2
x6
)
c1
)
)
(
cv
x5
)
)
(
cv
x4
)
cli
)
)
(
λ x5 .
cz
)
)
(
wrex
(
λ x5 .
wex
(
λ x6 .
wa
(
wf1o
(
co
c1
(
cv
x5
)
cfz
)
(
x1
x3
)
(
cv
x6
)
)
(
wceq
(
cv
x4
)
(
cfv
(
cv
x5
)
(
cseq
cmul
(
cmpt
(
λ x7 .
cn
)
(
λ x7 .
csb
(
cfv
(
cv
x7
)
(
cv
x6
)
)
x2
)
)
c1
)
)
)
)
)
(
λ x5 .
cn
)
)
)
)
)
⟶
wceq
crisefac
(
cmpt2
(
λ x1 x2 .
cc
)
(
λ x1 x2 .
cn0
)
(
λ x1 x2 .
cprod
(
λ x3 .
co
cc0
(
co
(
cv
x2
)
c1
cmin
)
cfz
)
(
λ x3 .
co
(
cv
x1
)
(
cv
x3
)
caddc
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_rtrcl
:
wceq
crtcl
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cint
(
cab
(
λ x1 .
w3a
(
wss
(
cres
cid
(
cun
(
cdm
(
cv
x0
)
)
(
crn
(
cv
x0
)
)
)
)
(
cv
x1
)
)
(
wss
(
cv
x0
)
(
cv
x1
)
)
(
wss
(
ccom
(
cv
x1
)
(
cv
x1
)
)
(
cv
x1
)
)
)
)
)
)
(proof)
Theorem
df_relexp
:
wceq
crelexp
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cn0
)
(
λ x0 x1 .
cif
(
wceq
(
cv
x1
)
cc0
)
(
cres
cid
(
cun
(
cdm
(
cv
x0
)
)
(
crn
(
cv
x0
)
)
)
)
(
cfv
(
cv
x1
)
(
cseq
(
cmpt2
(
λ x2 x3 .
cvv
)
(
λ x2 x3 .
cvv
)
(
λ x2 x3 .
ccom
(
cv
x2
)
(
cv
x0
)
)
)
(
cmpt
(
λ x2 .
cvv
)
(
λ x2 .
cv
x0
)
)
c1
)
)
)
)
(proof)
Theorem
df_rtrclrec
:
wceq
crtrcl
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
ciun
(
λ x1 .
cn0
)
(
λ x1 .
co
(
cv
x0
)
(
cv
x1
)
crelexp
)
)
)
(proof)
Theorem
df_shft
:
wceq
cshi
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cc
)
(
λ x0 x1 .
copab
(
λ x2 x3 .
wa
(
wcel
(
cv
x2
)
cc
)
(
wbr
(
co
(
cv
x2
)
(
cv
x1
)
cmin
)
(
cv
x3
)
(
cv
x0
)
)
)
)
)
(proof)
Theorem
df_sgn
:
wceq
csgn
(
cmpt
(
λ x0 .
cxr
)
(
λ x0 .
cif
(
wceq
(
cv
x0
)
cc0
)
cc0
(
cif
(
wbr
(
cv
x0
)
cc0
clt
)
(
cneg
c1
)
c1
)
)
)
(proof)
Theorem
df_cj
:
wceq
ccj
(
cmpt
(
λ x0 .
cc
)
(
λ x0 .
crio
(
λ x1 .
wa
(
wcel
(
co
(
cv
x0
)
(
cv
x1
)
caddc
)
cr
)
(
wcel
(
co
ci
(
co
(
cv
x0
)
(
cv
x1
)
cmin
)
cmul
)
cr
)
)
(
λ x1 .
cc
)
)
)
(proof)
Theorem
df_re
:
wceq
cre
(
cmpt
(
λ x0 .
cc
)
(
λ x0 .
co
(
co
(
cv
x0
)
(
cfv
(
cv
x0
)
ccj
)
caddc
)
c2
cdiv
)
)
(proof)
Theorem
df_im
:
wceq
cim
(
cmpt
(
λ x0 .
cc
)
(
λ x0 .
cfv
(
co
(
cv
x0
)
ci
cdiv
)
cre
)
)
(proof)
Theorem
df_sqrt
:
wceq
csqrt
(
cmpt
(
λ x0 .
cc
)
(
λ x0 .
crio
(
λ x1 .
w3a
(
wceq
(
co
(
cv
x1
)
c2
cexp
)
(
cv
x0
)
)
(
wbr
cc0
(
cfv
(
cv
x1
)
cre
)
cle
)
(
wnel
(
co
ci
(
cv
x1
)
cmul
)
crp
)
)
(
λ x1 .
cc
)
)
)
(proof)
Theorem
df_abs
:
wceq
cabs
(
cmpt
(
λ x0 .
cc
)
(
λ x0 .
cfv
(
co
(
cv
x0
)
(
cfv
(
cv
x0
)
ccj
)
cmul
)
csqrt
)
)
(proof)
Theorem
df_limsup
:
wceq
clsp
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cinf
(
crn
(
cmpt
(
λ x1 .
cr
)
(
λ x1 .
csup
(
cin
(
cima
(
cv
x0
)
(
co
(
cv
x1
)
cpnf
cico
)
)
cxr
)
cxr
clt
)
)
)
cxr
clt
)
)
(proof)
Theorem
df_clim
:
wceq
cli
(
copab
(
λ x0 x1 .
wa
(
wcel
(
cv
x1
)
cc
)
(
wral
(
λ x2 .
wrex
(
λ x3 .
wral
(
λ x4 .
wa
(
wcel
(
cfv
(
cv
x4
)
(
cv
x0
)
)
cc
)
(
wbr
(
cfv
(
co
(
cfv
(
cv
x4
)
(
cv
x0
)
)
(
cv
x1
)
cmin
)
cabs
)
(
cv
x2
)
clt
)
)
(
λ x4 .
cfv
(
cv
x3
)
cuz
)
)
(
λ x3 .
cz
)
)
(
λ x2 .
crp
)
)
)
)
(proof)
Theorem
df_rlim
:
wceq
crli
(
copab
(
λ x0 x1 .
wa
(
wa
(
wcel
(
cv
x0
)
(
co
cc
cr
cpm
)
)
(
wcel
(
cv
x1
)
cc
)
)
(
wral
(
λ x2 .
wrex
(
λ x3 .
wral
(
λ x4 .
wbr
(
cv
x3
)
(
cv
x4
)
cle
⟶
wbr
(
cfv
(
co
(
cfv
(
cv
x4
)
(
cv
x0
)
)
(
cv
x1
)
cmin
)
cabs
)
(
cv
x2
)
clt
)
(
λ x4 .
cdm
(
cv
x0
)
)
)
(
λ x3 .
cr
)
)
(
λ x2 .
crp
)
)
)
)
(proof)
Theorem
df_o1
:
wceq
co1
(
crab
(
λ x0 .
wrex
(
λ x1 .
wrex
(
λ x2 .
wral
(
λ x3 .
wbr
(
cfv
(
cfv
(
cv
x3
)
(
cv
x0
)
)
cabs
)
(
cv
x2
)
cle
)
(
λ x3 .
cin
(
cdm
(
cv
x0
)
)
(
co
(
cv
x1
)
cpnf
cico
)
)
)
(
λ x2 .
cr
)
)
(
λ x1 .
cr
)
)
(
λ x0 .
co
cc
cr
cpm
)
)
(proof)
Theorem
df_lo1
:
wceq
clo1
(
crab
(
λ x0 .
wrex
(
λ x1 .
wrex
(
λ x2 .
wral
(
λ x3 .
wbr
(
cfv
(
cv
x3
)
(
cv
x0
)
)
(
cv
x2
)
cle
)
(
λ x3 .
cin
(
cdm
(
cv
x0
)
)
(
co
(
cv
x1
)
cpnf
cico
)
)
)
(
λ x2 .
cr
)
)
(
λ x1 .
cr
)
)
(
λ x0 .
co
cr
cr
cpm
)
)
(proof)
Theorem
df_sum
:
∀ x0 x1 :
ι →
ι → ο
.
∀ x2 .
wceq
(
csu
(
x0
x2
)
x1
)
(
cio
(
λ x3 .
wo
(
wrex
(
λ x4 .
wa
(
wss
(
x0
x2
)
(
cfv
(
cv
x4
)
cuz
)
)
(
wbr
(
cseq
caddc
(
cmpt
(
λ x5 .
cz
)
(
λ x5 .
cif
(
wcel
(
cv
x5
)
(
x0
x2
)
)
(
csb
(
cv
x5
)
x1
)
cc0
)
)
(
cv
x4
)
)
(
cv
x3
)
cli
)
)
(
λ x4 .
cz
)
)
(
wrex
(
λ x4 .
wex
(
λ x5 .
wa
(
wf1o
(
co
c1
(
cv
x4
)
cfz
)
(
x0
x2
)
(
cv
x5
)
)
(
wceq
(
cv
x3
)
(
cfv
(
cv
x4
)
(
cseq
caddc
(
cmpt
(
λ x6 .
cn
)
(
λ x6 .
csb
(
cfv
(
cv
x6
)
(
cv
x5
)
)
x1
)
)
c1
)
)
)
)
)
(
λ x4 .
cn
)
)
)
)
(proof)
Theorem
df_prod
:
∀ x0 x1 :
ι →
ι → ο
.
∀ x2 .
wceq
(
cprod
x0
x1
)
(
cio
(
λ x3 .
wo
(
wrex
(
λ x4 .
w3a
(
wss
(
x0
x2
)
(
cfv
(
cv
x4
)
cuz
)
)
(
wrex
(
λ x5 .
wex
(
λ x6 .
wa
(
wne
(
cv
x6
)
cc0
)
(
wbr
(
cseq
cmul
(
cmpt
(
λ x7 .
cz
)
(
λ x7 .
cif
(
wcel
(
cv
x7
)
(
x0
x7
)
)
(
x1
x7
)
c1
)
)
(
cv
x5
)
)
(
cv
x6
)
cli
)
)
)
(
λ x5 .
cfv
(
cv
x4
)
cuz
)
)
(
wbr
(
cseq
cmul
(
cmpt
(
λ x5 .
cz
)
(
λ x5 .
cif
(
wcel
(
cv
x5
)
(
x0
x5
)
)
(
x1
x5
)
c1
)
)
(
cv
x4
)
)
(
cv
x3
)
cli
)
)
(
λ x4 .
cz
)
)
(
wrex
(
λ x4 .
wex
(
λ x5 .
wa
(
wf1o
(
co
c1
(
cv
x4
)
cfz
)
(
x0
x2
)
(
cv
x5
)
)
(
wceq
(
cv
x3
)
(
cfv
(
cv
x4
)
(
cseq
cmul
(
cmpt
(
λ x6 .
cn
)
(
λ x6 .
csb
(
cfv
(
cv
x6
)
(
cv
x5
)
)
x1
)
)
c1
)
)
)
)
)
(
λ x4 .
cn
)
)
)
)
(proof)
Theorem
df_risefac
:
wceq
crisefac
(
cmpt2
(
λ x0 x1 .
cc
)
(
λ x0 x1 .
cn0
)
(
λ x0 x1 .
cprod
(
λ x2 .
co
cc0
(
co
(
cv
x1
)
c1
cmin
)
cfz
)
(
λ x2 .
co
(
cv
x0
)
(
cv
x2
)
caddc
)
)
)
(proof)