Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr4wN..
/
88c9d..
PUeWw..
/
8d21b..
vout
Pr4wN..
/
fce21..
0.10 bars
TMW3J..
/
3dc97..
ownership of
85d34..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNRk..
/
a19fb..
ownership of
8137b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcAk..
/
3e2ed..
ownership of
fcbf9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPhx..
/
b4deb..
ownership of
0ef53..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJtr..
/
f086d..
ownership of
80c77..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaNi..
/
0ae60..
ownership of
9aaf3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSV4..
/
8c630..
ownership of
184f0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQWr..
/
74395..
ownership of
d5d31..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKQ9..
/
12f0b..
ownership of
397ce..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRFE..
/
dde13..
ownership of
68f8d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcTE..
/
8847f..
ownership of
3af6f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYXn..
/
531de..
ownership of
da5c6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQPo..
/
5028f..
ownership of
c6b64..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYiv..
/
4ff16..
ownership of
6c07b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMHf..
/
36a63..
ownership of
d7763..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMMh..
/
64515..
ownership of
38a30..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUjZ..
/
f03f2..
ownership of
2a6e6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRx8..
/
d1035..
ownership of
6d176..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJug..
/
f650c..
ownership of
9c67a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNrU..
/
ecbcf..
ownership of
6d210..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLZ4..
/
60806..
ownership of
a8665..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWce..
/
2bf1e..
ownership of
918ec..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHR5..
/
e2917..
ownership of
1a477..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbky..
/
80e12..
ownership of
343de..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWEo..
/
d3590..
ownership of
36149..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMc1g..
/
262c3..
ownership of
d394a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEp8..
/
0284e..
ownership of
47f84..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUJk..
/
9cfee..
ownership of
ab2ec..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaMt..
/
985d0..
ownership of
0fe2c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGLM..
/
aee32..
ownership of
7553f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUka..
/
0a265..
ownership of
9ef0e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYyy..
/
0bff8..
ownership of
4fb85..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMH44..
/
fceb4..
ownership of
bd87a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaAx..
/
6194f..
ownership of
ff848..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNUR..
/
a95e2..
ownership of
88a28..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTqA..
/
a5c10..
ownership of
2d55d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUR6R..
/
338f2..
doc published by
PrCmT..
Known
df_supp__df_tpos__df_cur__df_unc__df_undef__df_wrecs__df_smo__df_recs__df_rdg__df_seqom__df_1o__df_2o__df_3o__df_4o__df_oadd__df_omul__df_oexp__df_er
:
∀ x0 : ο .
(
wceq
csupp
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
crab
(
λ x3 .
wne
(
cima
(
cv
x1
)
(
csn
(
cv
x3
)
)
)
(
csn
(
cv
x2
)
)
)
(
λ x3 .
cdm
(
cv
x1
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
ctpos
x1
)
(
ccom
x1
(
cmpt
(
λ x2 .
cun
(
ccnv
(
cdm
x1
)
)
(
csn
c0
)
)
(
λ x2 .
cuni
(
ccnv
(
csn
(
cv
x2
)
)
)
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
ccur
x1
)
(
cmpt
(
λ x2 .
cdm
(
cdm
x1
)
)
(
λ x2 .
copab
(
λ x3 x4 .
wbr
(
cop
(
cv
x2
)
(
cv
x3
)
)
(
cv
x4
)
x1
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
cunc
x1
)
(
coprab
(
λ x2 x3 x4 .
wbr
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x2
)
x1
)
)
)
)
⟶
wceq
cund
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cpw
(
cuni
(
cv
x1
)
)
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
wceq
(
cwrecs
x1
x2
x3
)
(
cuni
(
cab
(
λ x4 .
wex
(
λ x5 .
w3a
(
wfn
(
cv
x4
)
(
cv
x5
)
)
(
wa
(
wss
(
cv
x5
)
x1
)
(
wral
(
λ x6 .
wss
(
cpred
x1
x2
(
cv
x6
)
)
(
cv
x5
)
)
(
λ x6 .
cv
x5
)
)
)
(
wral
(
λ x6 .
wceq
(
cfv
(
cv
x6
)
(
cv
x4
)
)
(
cfv
(
cres
(
cv
x4
)
(
cpred
x1
x2
(
cv
x6
)
)
)
x3
)
)
(
λ x6 .
cv
x5
)
)
)
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wb
(
wsmo
x1
)
(
w3a
(
wf
(
cdm
x1
)
con0
x1
)
(
word
(
cdm
x1
)
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wcel
(
cv
x2
)
(
cv
x3
)
⟶
wcel
(
cfv
(
cv
x2
)
x1
)
(
cfv
(
cv
x3
)
x1
)
)
(
λ x3 .
cdm
x1
)
)
(
λ x2 .
cdm
x1
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
crecs
x1
)
(
cwrecs
con0
cep
x1
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
crdg
x1
x2
)
(
crecs
(
cmpt
(
λ x3 .
cvv
)
(
λ x3 .
cif
(
wceq
(
cv
x3
)
c0
)
x2
(
cif
(
wlim
(
cdm
(
cv
x3
)
)
)
(
cuni
(
crn
(
cv
x3
)
)
)
(
cfv
(
cfv
(
cuni
(
cdm
(
cv
x3
)
)
)
(
cv
x3
)
)
x1
)
)
)
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
cseqom
x1
x2
)
(
cima
(
crdg
(
cmpt2
(
λ x3 x4 .
com
)
(
λ x3 x4 .
cvv
)
(
λ x3 x4 .
cop
(
csuc
(
cv
x3
)
)
(
co
(
cv
x3
)
(
cv
x4
)
x1
)
)
)
(
cop
c0
(
cfv
x2
cid
)
)
)
com
)
)
⟶
wceq
c1o
(
csuc
c0
)
⟶
wceq
c2o
(
csuc
c1o
)
⟶
wceq
c3o
(
csuc
c2o
)
⟶
wceq
c4o
(
csuc
c3o
)
⟶
wceq
coa
(
cmpt2
(
λ x1 x2 .
con0
)
(
λ x1 x2 .
con0
)
(
λ x1 x2 .
cfv
(
cv
x2
)
(
crdg
(
cmpt
(
λ x3 .
cvv
)
(
λ x3 .
csuc
(
cv
x3
)
)
)
(
cv
x1
)
)
)
)
⟶
wceq
comu
(
cmpt2
(
λ x1 x2 .
con0
)
(
λ x1 x2 .
con0
)
(
λ x1 x2 .
cfv
(
cv
x2
)
(
crdg
(
cmpt
(
λ x3 .
cvv
)
(
λ x3 .
co
(
cv
x3
)
(
cv
x1
)
coa
)
)
c0
)
)
)
⟶
wceq
coe
(
cmpt2
(
λ x1 x2 .
con0
)
(
λ x1 x2 .
con0
)
(
λ x1 x2 .
cif
(
wceq
(
cv
x1
)
c0
)
(
cdif
c1o
(
cv
x2
)
)
(
cfv
(
cv
x2
)
(
crdg
(
cmpt
(
λ x3 .
cvv
)
(
λ x3 .
co
(
cv
x3
)
(
cv
x1
)
comu
)
)
c1o
)
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wb
(
wer
x1
x2
)
(
w3a
(
wrel
x2
)
(
wceq
(
cdm
x2
)
x1
)
(
wss
(
cun
(
ccnv
x2
)
(
ccom
x2
x2
)
)
x2
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_supp
:
wceq
csupp
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
crab
(
λ x2 .
wne
(
cima
(
cv
x0
)
(
csn
(
cv
x2
)
)
)
(
csn
(
cv
x1
)
)
)
(
λ x2 .
cdm
(
cv
x0
)
)
)
)
(proof)
Theorem
df_tpos
:
∀ x0 :
ι → ο
.
wceq
(
ctpos
x0
)
(
ccom
x0
(
cmpt
(
λ x1 .
cun
(
ccnv
(
cdm
x0
)
)
(
csn
c0
)
)
(
λ x1 .
cuni
(
ccnv
(
csn
(
cv
x1
)
)
)
)
)
)
(proof)
Theorem
df_cur
:
∀ x0 :
ι → ο
.
wceq
(
ccur
x0
)
(
cmpt
(
λ x1 .
cdm
(
cdm
x0
)
)
(
λ x1 .
copab
(
λ x2 x3 .
wbr
(
cop
(
cv
x1
)
(
cv
x2
)
)
(
cv
x3
)
x0
)
)
)
(proof)
Theorem
df_unc
:
∀ x0 :
ι → ο
.
wceq
(
cunc
x0
)
(
coprab
(
λ x1 x2 x3 .
wbr
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
x0
)
)
)
(proof)
Theorem
df_undef
:
wceq
cund
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cpw
(
cuni
(
cv
x0
)
)
)
)
(proof)
Theorem
df_wrecs
:
∀ x0 x1 x2 :
ι → ο
.
wceq
(
cwrecs
x0
x1
x2
)
(
cuni
(
cab
(
λ x3 .
wex
(
λ x4 .
w3a
(
wfn
(
cv
x3
)
(
cv
x4
)
)
(
wa
(
wss
(
cv
x4
)
x0
)
(
wral
(
λ x5 .
wss
(
cpred
x0
x1
(
cv
x5
)
)
(
cv
x4
)
)
(
λ x5 .
cv
x4
)
)
)
(
wral
(
λ x5 .
wceq
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cres
(
cv
x3
)
(
cpred
x0
x1
(
cv
x5
)
)
)
x2
)
)
(
λ x5 .
cv
x4
)
)
)
)
)
)
(proof)
Theorem
df_smo
:
∀ x0 :
ι → ο
.
wb
(
wsmo
x0
)
(
w3a
(
wf
(
cdm
x0
)
con0
x0
)
(
word
(
cdm
x0
)
)
(
wral
(
λ x1 .
wral
(
λ x2 .
wcel
(
cv
x1
)
(
cv
x2
)
⟶
wcel
(
cfv
(
cv
x1
)
x0
)
(
cfv
(
cv
x2
)
x0
)
)
(
λ x2 .
cdm
x0
)
)
(
λ x1 .
cdm
x0
)
)
)
(proof)
Theorem
df_recs
:
∀ x0 :
ι → ο
.
wceq
(
crecs
x0
)
(
cwrecs
con0
cep
x0
)
(proof)
Theorem
df_rdg
:
∀ x0 x1 :
ι → ο
.
wceq
(
crdg
x0
x1
)
(
crecs
(
cmpt
(
λ x2 .
cvv
)
(
λ x2 .
cif
(
wceq
(
cv
x2
)
c0
)
x1
(
cif
(
wlim
(
cdm
(
cv
x2
)
)
)
(
cuni
(
crn
(
cv
x2
)
)
)
(
cfv
(
cfv
(
cuni
(
cdm
(
cv
x2
)
)
)
(
cv
x2
)
)
x0
)
)
)
)
)
(proof)
Theorem
df_seqom
:
∀ x0 x1 :
ι → ο
.
wceq
(
cseqom
x0
x1
)
(
cima
(
crdg
(
cmpt2
(
λ x2 x3 .
com
)
(
λ x2 x3 .
cvv
)
(
λ x2 x3 .
cop
(
csuc
(
cv
x2
)
)
(
co
(
cv
x2
)
(
cv
x3
)
x0
)
)
)
(
cop
c0
(
cfv
x1
cid
)
)
)
com
)
(proof)
Theorem
df_1o
:
wceq
c1o
(
csuc
c0
)
(proof)
Theorem
df_2o
:
wceq
c2o
(
csuc
c1o
)
(proof)
Theorem
df_3o
:
wceq
c3o
(
csuc
c2o
)
(proof)
Theorem
df_4o
:
wceq
c4o
(
csuc
c3o
)
(proof)
Theorem
df_oadd
:
wceq
coa
(
cmpt2
(
λ x0 x1 .
con0
)
(
λ x0 x1 .
con0
)
(
λ x0 x1 .
cfv
(
cv
x1
)
(
crdg
(
cmpt
(
λ x2 .
cvv
)
(
λ x2 .
csuc
(
cv
x2
)
)
)
(
cv
x0
)
)
)
)
(proof)
Theorem
df_omul
:
wceq
comu
(
cmpt2
(
λ x0 x1 .
con0
)
(
λ x0 x1 .
con0
)
(
λ x0 x1 .
cfv
(
cv
x1
)
(
crdg
(
cmpt
(
λ x2 .
cvv
)
(
λ x2 .
co
(
cv
x2
)
(
cv
x0
)
coa
)
)
c0
)
)
)
(proof)
Theorem
df_oexp
:
wceq
coe
(
cmpt2
(
λ x0 x1 .
con0
)
(
λ x0 x1 .
con0
)
(
λ x0 x1 .
cif
(
wceq
(
cv
x0
)
c0
)
(
cdif
c1o
(
cv
x1
)
)
(
cfv
(
cv
x1
)
(
crdg
(
cmpt
(
λ x2 .
cvv
)
(
λ x2 .
co
(
cv
x2
)
(
cv
x0
)
comu
)
)
c1o
)
)
)
)
(proof)
Theorem
df_er
:
∀ x0 x1 :
ι → ο
.
wb
(
wer
x0
x1
)
(
w3a
(
wrel
x1
)
(
wceq
(
cdm
x1
)
x0
)
(
wss
(
cun
(
ccnv
x1
)
(
ccom
x1
x1
)
)
x1
)
)
(proof)