Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrEvg../b8bb4..
PUY9J../e72a4..
vout
PrEvg../13f87.. 3.39 bars
TMSsH../2f51c.. ownership of 7e268.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMakk../ae5ea.. ownership of c40e0.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMYRn../f0942.. ownership of 42514.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMLKs../bf510.. ownership of c1180.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMUER../7929c.. ownership of aa5c0.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMUh3../7aa27.. ownership of 538c9.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMZV9../4aecb.. ownership of c57b9.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMVTn../5601f.. ownership of 5c75d.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMVEe../0d857.. ownership of 3a35b.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMcs6../ec255.. ownership of 3161f.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMVb2../55fc5.. ownership of 1b7fa.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMaSz../889fa.. ownership of eac15.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMSQZ../a8a99.. ownership of 3c207.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMQc6../4ecc8.. ownership of 1fcf6.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMH8C../9552d.. ownership of 99a65.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMFHf../f9b39.. ownership of 39312.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMTeS../2050f.. ownership of 5fbe6.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMH73../6f51a.. ownership of 3854c.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMPYF../f2318.. ownership of 03bab.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMHYh../67968.. ownership of b4430.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMZwi../5d21b.. ownership of ef47b.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TML89../1132c.. ownership of 6aaeb.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMUhn../676af.. ownership of 34c81.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMJC1../45981.. ownership of 0d8f1.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMRLT../17d60.. ownership of 966b6.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMTQg../950ae.. ownership of 0678e.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMGk9../d33d9.. ownership of 9056c.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMX41../81ae5.. ownership of 69e9f.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMZgz../c009b.. ownership of cfa90.. as obj with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMLk3../69cb1.. ownership of 38c74.. as obj with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMUbh../4609b.. ownership of 2f0a8.. as obj with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMUwK../15c8e.. ownership of c862a.. as obj with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMJTS../f55aa.. ownership of fb56c.. as obj with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMKi3../70c47.. ownership of 71b1b.. as obj with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMSj3../b528a.. ownership of dba53.. as obj with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMZFM../1afad.. ownership of 02652.. as obj with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMR8d../4f47d.. ownership of d94e6.. as obj with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMaJh../59cd9.. ownership of 88ff4.. as obj with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMKGq../78ac4.. ownership of 3e5e9.. as obj with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMUep../6dc69.. ownership of 036f9.. as obj with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMN47../1d433.. ownership of 00f04.. as obj with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMLQv../b6fd1.. ownership of ea151.. as obj with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
PUKiR../70806.. doc published by PrGxv..
Param 1ce4f..incl_0_1 : ιιο
Definition 00f04..down_1_0 := λ x0 : ι → ο . Eps_i (λ x1 . 1ce4f.. x1 = x0)
Param Descr_Vo1Descr_Vo1 : ((ιο) → ο) → ιο
Param 407b5..incl_1_2 : (ιο) → (ιο) → ο
Definition 3e5e9..down_2_1 := λ x0 : (ι → ο) → ο . Descr_Vo1 (λ x1 : ι → ο . 407b5.. x1 = x0)
Param Descr_Vo2Descr_Vo2 : (((ιο) → ο) → ο) → (ιο) → ο
Param 3a6d0..In_2 : ((ιο) → ο) → ((ιο) → ο) → ο
Definition a4b00..incl_2_3 := λ x0 x1 : (ι → ο) → ο . 3a6d0.. x1 x0
Definition d94e6..down_3_2 := λ x0 : ((ι → ο) → ο) → ο . Descr_Vo2 (λ x1 : (ι → ο) → ο . a4b00.. x1 = x0)
Param Descr_Vo3Descr_Vo3 : ((((ιο) → ο) → ο) → ο) → ((ιο) → ο) → ο
Param e6217..In_3 : (((ιο) → ο) → ο) → (((ιο) → ο) → ο) → ο
Definition a327b..incl_3_4 := λ x0 x1 : ((ι → ο) → ο) → ο . e6217.. x1 x0
Definition dba53..down_4_3 := λ x0 : (((ι → ο) → ο) → ο) → ο . Descr_Vo3 (λ x1 : ((ι → ο) → ο) → ο . a327b.. x1 = x0)
Known c0781..incl_0_1_inj : ∀ x0 x1 . 1ce4f.. x0 = 1ce4f.. x1x0 = x1
Known 4cb75..Eps_i_R : ∀ x0 : ι → ο . ∀ x1 . x0 x1x0 (Eps_i x0)
Theorem 9056c..down_1_0_incl_0_1 : ∀ x0 . 00f04.. (1ce4f.. x0) = x0 (proof)
Known 94a3d..incl_1_2_inj : ∀ x0 x1 : ι → ο . 407b5.. x0 = 407b5.. x1x0 = x1
Known Descr_Vo1_propDescr_Vo1_prop : ∀ x0 : (ι → ο) → ο . (∀ x1 : ο . (∀ x2 : ι → ο . x0 x2x1)x1)(∀ x1 x2 : ι → ο . x0 x1x0 x2x1 = x2)x0 (Descr_Vo1 x0)
Theorem 966b6..down_2_1_incl_1_2 : ∀ x0 : ι → ο . 3e5e9.. (407b5.. x0) = x0 (proof)
Known ea98f..incl_2_3_inj : ∀ x0 x1 : (ι → ο) → ο . a4b00.. x0 = a4b00.. x1x0 = x1
Known Descr_Vo2_propDescr_Vo2_prop : ∀ x0 : ((ι → ο) → ο) → ο . (∀ x1 : ο . (∀ x2 : (ι → ο) → ο . x0 x2x1)x1)(∀ x1 x2 : (ι → ο) → ο . x0 x1x0 x2x1 = x2)x0 (Descr_Vo2 x0)
Theorem 34c81..down_3_2_incl_2_3 : ∀ x0 : (ι → ο) → ο . d94e6.. (a4b00.. x0) = x0 (proof)
Known 79850..incl_3_4_inj : ∀ x0 x1 : ((ι → ο) → ο) → ο . a327b.. x0 = a327b.. x1x0 = x1
Known Descr_Vo3_propDescr_Vo3_prop : ∀ x0 : (((ι → ο) → ο) → ο) → ο . (∀ x1 : ο . (∀ x2 : ((ι → ο) → ο) → ο . x0 x2x1)x1)(∀ x1 x2 : ((ι → ο) → ο) → ο . x0 x1x0 x2x1 = x2)x0 (Descr_Vo3 x0)
Theorem ef47b..down_4_3_incl_3_4 : ∀ x0 : ((ι → ο) → ο) → ο . dba53.. (a327b.. x0) = x0 (proof)
Definition fb56c..AC_1 := ∀ x0 : ο . (∀ x1 : ((ι → ο) → ο)ι → ο . (∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ο . x2 x3x2 (x1 x2))x0)x0
Definition 2f0a8..AC_2 := ∀ x0 : ο . (∀ x1 : (((ι → ο) → ο) → ο)(ι → ο) → ο . (∀ x2 : ((ι → ο) → ο) → ο . ∀ x3 : (ι → ο) → ο . x2 x3x2 (x1 x2))x0)x0
Definition cfa90..AC_3 := ∀ x0 : ο . (∀ x1 : ((((ι → ο) → ο) → ο) → ο)((ι → ο) → ο) → ο . (∀ x2 : (((ι → ο) → ο) → ο) → ο . ∀ x3 : ((ι → ο) → ο) → ο . x2 x3x2 (x1 x2))x0)x0
Known af1a5..In_3_E : ∀ x0 x1 : ((ι → ο) → ο) → ο . e6217.. x0 x1∀ x2 : (((ι → ο) → ο) → ο) → ο . (∀ x3 : (ι → ο) → ο . x1 x3x2 (a4b00.. x3))x2 x0
Known 7abdf..In_3_I : ∀ x0 : (ι → ο) → ο . ∀ x1 : ((ι → ο) → ο) → ο . x1 x0e6217.. (a4b00.. x0) x1
Theorem 03bab..AC_3_imp_AC_2 : cfa90..2f0a8.. (proof)
Known 724a1..In_2_E : ∀ x0 x1 : (ι → ο) → ο . 3a6d0.. x0 x1∀ x2 : ((ι → ο) → ο) → ο . (∀ x3 : ι → ο . x1 x3x2 (407b5.. x3))x2 x0
Known 5b9f0..In_2_I : ∀ x0 : ι → ο . ∀ x1 : (ι → ο) → ο . x1 x03a6d0.. (407b5.. x0) x1
Theorem 5fbe6..AC_2_imp_AC_1 : 2f0a8..fb56c.. (proof)
Theorem 99a65..Skolem_0 : ∀ x0 : ι → ι → ο . (∀ x1 . ∀ x2 : ο . (∀ x3 . x0 x1 x3x2)x2)∀ x1 : ο . (∀ x2 : ι → ι . (∀ x3 . x0 x3 (x2 x3))x1)x1 (proof)
Theorem 3c207..Skolem_0_bdd : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . In x2 x0∀ x3 : ο . (∀ x4 . x1 x2 x4x3)x3)∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 . In x4 x0x1 x4 (x3 x4))x2)x2 (proof)
Theorem 1b7fa..Skolem_1 : fb56c..∀ x0 : (ι → ο)(ι → ο) → ο . (∀ x1 : ι → ο . ∀ x2 : ο . (∀ x3 : ι → ο . x0 x1 x3x2)x2)∀ x1 : ο . (∀ x2 : (ι → ο)ι → ο . (∀ x3 : ι → ο . x0 x3 (x2 x3))x1)x1 (proof)
Param d97e3..In_1 : (ιο) → (ιο) → ο
Theorem 3a35b..Skolem_1_bdd : fb56c..∀ x0 : ι → ο . ∀ x1 : (ι → ο)(ι → ο) → ο . (∀ x2 : ι → ο . d97e3.. x2 x0∀ x3 : ο . (∀ x4 : ι → ο . x1 x2 x4x3)x3)∀ x2 : ο . (∀ x3 : (ι → ο)ι → ο . (∀ x4 : ι → ο . d97e3.. x4 x0x1 x4 (x3 x4))x2)x2 (proof)
Theorem c57b9..Skolem_2 : 2f0a8..∀ x0 : ((ι → ο) → ο)((ι → ο) → ο) → ο . (∀ x1 : (ι → ο) → ο . ∀ x2 : ο . (∀ x3 : (ι → ο) → ο . x0 x1 x3x2)x2)∀ x1 : ο . (∀ x2 : ((ι → ο) → ο)(ι → ο) → ο . (∀ x3 : (ι → ο) → ο . x0 x3 (x2 x3))x1)x1 (proof)
Theorem aa5c0..Skolem_2_bdd : 2f0a8..∀ x0 : (ι → ο) → ο . ∀ x1 : ((ι → ο) → ο)((ι → ο) → ο) → ο . (∀ x2 : (ι → ο) → ο . 3a6d0.. x2 x0∀ x3 : ο . (∀ x4 : (ι → ο) → ο . x1 x2 x4x3)x3)∀ x2 : ο . (∀ x3 : ((ι → ο) → ο)(ι → ο) → ο . (∀ x4 : (ι → ο) → ο . 3a6d0.. x4 x0x1 x4 (x3 x4))x2)x2 (proof)
Theorem 42514..Skolem_3 : cfa90..∀ x0 : (((ι → ο) → ο) → ο)(((ι → ο) → ο) → ο) → ο . (∀ x1 : ((ι → ο) → ο) → ο . ∀ x2 : ο . (∀ x3 : ((ι → ο) → ο) → ο . x0 x1 x3x2)x2)∀ x1 : ο . (∀ x2 : (((ι → ο) → ο) → ο)((ι → ο) → ο) → ο . (∀ x3 : ((ι → ο) → ο) → ο . x0 x3 (x2 x3))x1)x1 (proof)
Theorem 7e268..Skolem_3_bdd : cfa90..∀ x0 : ((ι → ο) → ο) → ο . ∀ x1 : (((ι → ο) → ο) → ο)(((ι → ο) → ο) → ο) → ο . (∀ x2 : ((ι → ο) → ο) → ο . e6217.. x2 x0∀ x3 : ο . (∀ x4 : ((ι → ο) → ο) → ο . x1 x2 x4x3)x3)∀ x2 : ο . (∀ x3 : (((ι → ο) → ο) → ο)((ι → ο) → ο) → ο . (∀ x4 : ((ι → ο) → ο) → ο . e6217.. x4 x0x1 x4 (x3 x4))x2)x2 (proof)