Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrJAV..
/
978bd..
PUKt2..
/
e866b..
vout
PrJAV..
/
dce20..
6.38 bars
TMUDF..
/
00ec0..
ownership of
d322c..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMbdj..
/
f7884..
ownership of
71a50..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMWer..
/
ea509..
ownership of
f249d..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMRts..
/
0de03..
ownership of
749b3..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMXsW..
/
52bf4..
ownership of
b70da..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMPF6..
/
7ae0a..
ownership of
fca03..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMUgu..
/
1eddb..
ownership of
fec9d..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMNP6..
/
52974..
ownership of
33b5c..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMKsq..
/
38136..
ownership of
0714a..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMSSC..
/
812ec..
ownership of
4b4b6..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMH8c..
/
648b2..
ownership of
15de6..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMLLK..
/
88419..
ownership of
e8fe5..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMbSE..
/
d2aff..
ownership of
eefdf..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMbhP..
/
a351c..
ownership of
3f000..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMLcn..
/
22807..
ownership of
8435a..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMbHq..
/
16370..
ownership of
7b602..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMV6s..
/
aa094..
ownership of
daaad..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMSXi..
/
b08aa..
ownership of
66d7a..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMag1..
/
d36ed..
ownership of
a0aa5..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMFDV..
/
5ac82..
ownership of
02609..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMPwH..
/
7882f..
ownership of
6fbb0..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMLvP..
/
e6d8c..
ownership of
6c976..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMM3U..
/
6d0c8..
ownership of
36bf6..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMKvp..
/
a503a..
ownership of
f0596..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMYLK..
/
a5616..
ownership of
1b4d5..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMHaC..
/
f4b6f..
ownership of
a66fb..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJyo..
/
59fdc..
ownership of
c3d99..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMbZK..
/
2edf4..
ownership of
c213f..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMcPp..
/
50b1e..
ownership of
a3283..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMUEf..
/
15efe..
ownership of
2504c..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMaXH..
/
a463c..
ownership of
eb633..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMQtA..
/
ab65f..
ownership of
da39d..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
PUVtn..
/
1d8c7..
doc published by
Pr6Pc..
Param
omega
omega
:
ι
Param
mul_nat
mul_nat
:
ι
→
ι
→
ι
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Param
nat_p
nat_p
:
ι
→
ο
Param
ordinal
ordinal
:
ι
→
ο
Param
SNo
SNo
:
ι
→
ο
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Param
ordsucc
ordsucc
:
ι
→
ι
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
mul_SNo_zeroR
mul_SNo_zeroR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
0
=
0
Known
mul_nat_0R
mul_nat_0R
:
∀ x0 .
mul_nat
x0
0
=
0
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
mul_nat_SR
mul_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
mul_nat
x0
(
ordsucc
x1
)
=
add_nat
x0
(
mul_nat
x0
x1
)
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Known
add_nat_add_SNo
add_nat_add_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_nat
x0
x1
=
add_SNo
x0
x1
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
mul_nat_p
mul_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
mul_nat
x0
x1
)
Known
add_SNo_0L
add_SNo_0L
:
∀ x0 .
SNo
x0
⟶
add_SNo
0
x0
=
x0
Known
ordinal_SNo
ordinal_SNo
:
∀ x0 .
ordinal
x0
⟶
SNo
x0
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
add_SNo_ordinal_SL
add_SNo_ordinal_SL
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
ordinal
x1
⟶
add_SNo
(
ordsucc
x0
)
x1
=
ordsucc
(
add_SNo
x0
x1
)
Known
ordinal_Empty
ordinal_Empty
:
ordinal
0
Known
mul_SNo_distrL
mul_SNo_distrL
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Known
SNo_1
SNo_1
:
SNo
1
Known
mul_SNo_oneR
mul_SNo_oneR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
1
=
x0
Theorem
mul_nat_mul_SNo
mul_nat_mul_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_nat
x0
x1
=
mul_SNo
x0
x1
(proof)
Param
minus_SNo
minus_SNo
:
ι
→
ι
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
minus_CSNo
minus_CSNo
:
ι
→
ι
Definition
int_alt1
int
:=
binunion
omega
(
prim5
omega
minus_CSNo
)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
minus_SNo_minus_CSNo
minus_SNo_minus_CSNo
:
∀ x0 .
SNo
x0
⟶
minus_SNo
x0
=
minus_CSNo
x0
Theorem
a3283..
int_SNo_cases
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x1
∈
omega
⟶
x0
x1
)
⟶
(
∀ x1 .
x1
∈
omega
⟶
x0
(
minus_SNo
x1
)
)
⟶
∀ x1 .
x1
∈
int_alt1
⟶
x0
x1
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Theorem
c3d99..
Subq_omega_int
:
omega
⊆
int_alt1
(proof)
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Theorem
1b4d5..
int_minus_SNo_omega
:
∀ x0 .
x0
∈
omega
⟶
minus_SNo
x0
∈
int_alt1
(proof)
Theorem
ordinal_ordsucc_SNo_eq
ordinal_ordsucc_SNo_eq
:
∀ x0 .
ordinal
x0
⟶
ordsucc
x0
=
add_SNo
1
x0
(proof)
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
add_SNo_com_3_0_1
add_SNo_com_3_0_1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
x1
(
add_SNo
x0
x2
)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
nat_inv
nat_inv
:
∀ x0 .
nat_p
x0
⟶
or
(
x0
=
0
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
nat_p
x2
)
(
x0
=
ordsucc
x2
)
⟶
x1
)
⟶
x1
)
Known
minus_SNo_0
minus_SNo_0
:
minus_SNo
0
=
0
Known
nat_1
nat_1
:
nat_p
1
Known
minus_add_SNo_distr
minus_add_SNo_distr
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
minus_SNo
(
add_SNo
x0
x1
)
=
add_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
Known
add_SNo_minus_SNo_prop2
add_SNo_minus_SNo_prop2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
(
add_SNo
(
minus_SNo
x0
)
x1
)
=
x1
Known
omega_ordsucc
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
Theorem
6fbb0..
int_add_SNo_lem
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
nat_p
x1
⟶
add_SNo
(
minus_SNo
x0
)
x1
∈
int_alt1
(proof)
Known
add_SNo_In_omega
add_SNo_In_omega
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_SNo
x0
x1
∈
omega
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Theorem
a0aa5..
int_add_SNo
:
∀ x0 .
x0
∈
int_alt1
⟶
∀ x1 .
x1
∈
int_alt1
⟶
add_SNo
x0
x1
∈
int_alt1
(proof)
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Theorem
daaad..
int_minus_SNo
:
∀ x0 .
x0
∈
int_alt1
⟶
minus_SNo
x0
∈
int_alt1
(proof)
Theorem
mul_SNo_In_omega
mul_SNo_In_omega
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_SNo
x0
x1
∈
omega
(proof)
Known
mul_SNo_com
mul_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_SNo
x1
x0
Known
mul_SNo_minus_distrL
mul_SNo_minus_distrL
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
(
minus_SNo
x0
)
x1
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Theorem
eefdf..
int_mul_SNo
:
∀ x0 .
x0
∈
int_alt1
⟶
∀ x1 .
x1
∈
int_alt1
⟶
mul_SNo
x0
x1
∈
int_alt1
(proof)
Param
SNo_pair
SNo_pair
:
ι
→
ι
→
ι
Param
CSNo_Re
CSNo_Re
:
ι
→
ι
Param
CSNo_Im
CSNo_Im
:
ι
→
ι
Definition
mul_CSNo
mul_CSNo
:=
λ x0 x1 .
SNo_pair
(
add_SNo
(
mul_SNo
(
CSNo_Re
x0
)
(
CSNo_Re
x1
)
)
(
minus_SNo
(
mul_SNo
(
CSNo_Im
x0
)
(
CSNo_Im
x1
)
)
)
)
(
add_SNo
(
mul_SNo
(
CSNo_Re
x0
)
(
CSNo_Im
x1
)
)
(
mul_SNo
(
CSNo_Im
x0
)
(
CSNo_Re
x1
)
)
)
Known
SNo_Re
SNo_Re
:
∀ x0 .
SNo
x0
⟶
CSNo_Re
x0
=
x0
Known
SNo_pair_0
SNo_pair_0
:
∀ x0 .
SNo_pair
x0
0
=
x0
Known
SNo_Im
SNo_Im
:
∀ x0 .
SNo
x0
⟶
CSNo_Im
x0
=
0
Known
SNo_0
SNo_0
:
SNo
0
Theorem
15de6..
mul_SNo_mul_CSNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_CSNo
x0
x1
(proof)
Known
add_SNo_rotate_4_1
add_SNo_rotate_4_1
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
x3
)
)
=
add_SNo
x3
(
add_SNo
x0
(
add_SNo
x1
x2
)
)
Known
SNo_add_SNo_3
SNo_add_SNo_3
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
x2
)
)
Theorem
add_SNo_rotate_5_1
add_SNo_rotate_5_1
:
∀ x0 x1 x2 x3 x4 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
x4
)
)
)
=
add_SNo
x4
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
x3
)
)
)
(proof)
Theorem
add_SNo_rotate_5_2
add_SNo_rotate_5_2
:
∀ x0 x1 x2 x3 x4 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
x4
)
)
)
=
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x0
(
add_SNo
x1
x2
)
)
)
(proof)
Param
SNoL
SNoL
:
ι
→
ι
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Param
SNoR
SNoR
:
ι
→
ι
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Param
SNoS_
SNoS_
:
ι
→
ι
Param
SNoLev
SNoLev
:
ι
→
ι
Known
SNoL_E
SNoL_E
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoL
x0
⟶
∀ x2 : ο .
(
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x1
x0
⟶
x2
)
⟶
x2
Known
SNoL_SNoS
SNoL_SNoS
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoL
x0
⟶
x1
∈
SNoS_
(
SNoLev
x0
)
Known
SNoLtLe
SNoLtLe
:
∀ x0 x1 .
SNoLt
x0
x1
⟶
SNoLe
x0
x1
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
SNoR_E
SNoR_E
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoR
x0
⟶
∀ x2 : ο .
(
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x0
x1
⟶
x2
)
⟶
x2
Known
SNoR_SNoS
SNoR_SNoS
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoR
x0
⟶
x1
∈
SNoS_
(
SNoLev
x0
)
Param
SNo_
SNo_
:
ι
→
ι
→
ο
Known
SNoS_E2
SNoS_E2
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
SNoS_
x0
⟶
∀ x2 : ο .
(
SNoLev
x1
∈
x0
⟶
ordinal
(
SNoLev
x1
)
⟶
SNo
x1
⟶
SNo_
(
SNoLev
x1
)
x1
⟶
x2
)
⟶
x2
Known
SNoLev_ordinal
SNoLev_ordinal
:
∀ x0 .
SNo
x0
⟶
ordinal
(
SNoLev
x0
)
Known
add_SNo_minus_Lt1b3
add_SNo_minus_Lt1b3
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x3
x2
)
⟶
SNoLt
(
add_SNo
x0
(
add_SNo
x1
(
minus_SNo
x2
)
)
)
x3
Known
add_SNo_Lt1_cancel
add_SNo_Lt1_cancel
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
⟶
SNoLt
x0
x2
Known
SNoLeLt_tra
SNoLeLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
add_SNo_assoc
add_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
add_SNo
x0
x1
)
x2
Known
add_SNo_Le2
add_SNo_Le2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x1
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
SNo_add_SNo_4
SNo_add_SNo_4
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
x3
)
)
)
Known
add_SNo_Lt2
add_SNo_Lt2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x1
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Theorem
mul_SNo_assoc_lem1
mul_SNo_assoc_lem1
:
∀ x0 :
ι →
ι → ι
.
(
∀ x1 x2 .
SNo
x1
⟶
SNo
x2
⟶
SNo
(
x0
x1
x2
)
)
⟶
(
∀ x1 x2 x3 .
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
x0
x1
(
add_SNo
x2
x3
)
=
add_SNo
(
x0
x1
x2
)
(
x0
x1
x3
)
)
⟶
(
∀ x1 x2 x3 .
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
x0
(
add_SNo
x1
x2
)
x3
=
add_SNo
(
x0
x1
x3
)
(
x0
x2
x3
)
)
⟶
(
∀ x1 x2 .
SNo
x1
⟶
SNo
x2
⟶
∀ x3 .
x3
∈
SNoL
(
x0
x1
x2
)
⟶
∀ x4 : ο .
(
∀ x5 .
x5
∈
SNoL
x1
⟶
∀ x6 .
x6
∈
SNoL
x2
⟶
SNoLe
(
add_SNo
x3
(
x0
x5
x6
)
)
(
add_SNo
(
x0
x5
x2
)
(
x0
x1
x6
)
)
⟶
x4
)
⟶
(
∀ x5 .
x5
∈
SNoR
x1
⟶
∀ x6 .
x6
∈
SNoR
x2
⟶
SNoLe
(
add_SNo
x3
(
x0
x5
x6
)
)
(
add_SNo
(
x0
x5
x2
)
(
x0
x1
x6
)
)
⟶
x4
)
⟶
x4
)
⟶
(
∀ x1 x2 .
SNo
x1
⟶
SNo
x2
⟶
∀ x3 .
x3
∈
SNoR
(
x0
x1
x2
)
⟶
∀ x4 : ο .
(
∀ x5 .
x5
∈
SNoL
x1
⟶
∀ x6 .
x6
∈
SNoR
x2
⟶
SNoLe
(
add_SNo
(
x0
x5
x2
)
(
x0
x1
x6
)
)
(
add_SNo
x3
(
x0
x5
x6
)
)
⟶
x4
)
⟶
(
∀ x5 .
x5
∈
SNoR
x1
⟶
∀ x6 .
x6
∈
SNoL
x2
⟶
SNoLe
(
add_SNo
(
x0
x5
x2
)
(
x0
x1
x6
)
)
(
add_SNo
x3
(
x0
x5
x6
)
)
⟶
x4
)
⟶
x4
)
⟶
(
∀ x1 x2 x3 x4 .
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNoLt
x3
x1
⟶
SNoLt
x4
x2
⟶
SNoLt
(
add_SNo
(
x0
x3
x2
)
(
x0
x1
x4
)
)
(
add_SNo
(
x0
x1
x2
)
(
x0
x3
x4
)
)
)
⟶
(
∀ x1 x2 x3 x4 .
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNoLe
x3
x1
⟶
SNoLe
x4
x2
⟶
SNoLe
(
add_SNo
(
x0
x3
x2
)
(
x0
x1
x4
)
)
(
add_SNo
(
x0
x1
x2
)
(
x0
x3
x4
)
)
)
⟶
∀ x1 x2 x3 .
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x1
)
⟶
x0
x4
(
x0
x2
x3
)
=
x0
(
x0
x4
x2
)
x3
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x2
)
⟶
x0
x1
(
x0
x4
x3
)
=
x0
(
x0
x1
x4
)
x3
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x3
)
⟶
x0
x1
(
x0
x2
x4
)
=
x0
(
x0
x1
x2
)
x4
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x1
)
⟶
∀ x5 .
x5
∈
SNoS_
(
SNoLev
x2
)
⟶
x0
x4
(
x0
x5
x3
)
=
x0
(
x0
x4
x5
)
x3
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x1
)
⟶
∀ x5 .
x5
∈
SNoS_
(
SNoLev
x3
)
⟶
x0
x4
(
x0
x2
x5
)
=
x0
(
x0
x4
x2
)
x5
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x2
)
⟶
∀ x5 .
x5
∈
SNoS_
(
SNoLev
x3
)
⟶
x0
x1
(
x0
x4
x5
)
=
x0
(
x0
x1
x4
)
x5
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x1
)
⟶
∀ x5 .
x5
∈
SNoS_
(
SNoLev
x2
)
⟶
∀ x6 .
x6
∈
SNoS_
(
SNoLev
x3
)
⟶
x0
x4
(
x0
x5
x6
)
=
x0
(
x0
x4
x5
)
x6
)
⟶
∀ x4 .
(
∀ x5 .
x5
∈
x4
⟶
∀ x6 : ο .
(
∀ x7 .
x7
∈
SNoL
x1
⟶
∀ x8 .
x8
∈
SNoL
(
x0
x2
x3
)
⟶
x5
=
add_SNo
(
x0
x7
(
x0
x2
x3
)
)
(
add_SNo
(
x0
x1
x8
)
(
minus_SNo
(
x0
x7
x8
)
)
)
⟶
x6
)
⟶
(
∀ x7 .
x7
∈
SNoR
x1
⟶
∀ x8 .
x8
∈
SNoR
(
x0
x2
x3
)
⟶
x5
=
add_SNo
(
x0
x7
(
x0
x2
x3
)
)
(
add_SNo
(
x0
x1
x8
)
(
minus_SNo
(
x0
x7
x8
)
)
)
⟶
x6
)
⟶
x6
)
⟶
∀ x5 .
x5
∈
x4
⟶
SNoLt
x5
(
x0
(
x0
x1
x2
)
x3
)
(proof)
Known
add_SNo_minus_Lt2b3
add_SNo_minus_Lt2b3
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNoLt
(
add_SNo
x3
x2
)
(
add_SNo
x0
x1
)
⟶
SNoLt
x3
(
add_SNo
x0
(
add_SNo
x1
(
minus_SNo
x2
)
)
)
Known
SNoLtLe_tra
SNoLtLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLt
x0
x2
Theorem
mul_SNo_assoc_lem2
mul_SNo_assoc_lem2
:
∀ x0 :
ι →
ι → ι
.
(
∀ x1 x2 .
SNo
x1
⟶
SNo
x2
⟶
SNo
(
x0
x1
x2
)
)
⟶
(
∀ x1 x2 x3 .
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
x0
x1
(
add_SNo
x2
x3
)
=
add_SNo
(
x0
x1
x2
)
(
x0
x1
x3
)
)
⟶
(
∀ x1 x2 x3 .
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
x0
(
add_SNo
x1
x2
)
x3
=
add_SNo
(
x0
x1
x3
)
(
x0
x2
x3
)
)
⟶
(
∀ x1 x2 .
SNo
x1
⟶
SNo
x2
⟶
∀ x3 .
x3
∈
SNoL
(
x0
x1
x2
)
⟶
∀ x4 : ο .
(
∀ x5 .
x5
∈
SNoL
x1
⟶
∀ x6 .
x6
∈
SNoL
x2
⟶
SNoLe
(
add_SNo
x3
(
x0
x5
x6
)
)
(
add_SNo
(
x0
x5
x2
)
(
x0
x1
x6
)
)
⟶
x4
)
⟶
(
∀ x5 .
x5
∈
SNoR
x1
⟶
∀ x6 .
x6
∈
SNoR
x2
⟶
SNoLe
(
add_SNo
x3
(
x0
x5
x6
)
)
(
add_SNo
(
x0
x5
x2
)
(
x0
x1
x6
)
)
⟶
x4
)
⟶
x4
)
⟶
(
∀ x1 x2 .
SNo
x1
⟶
SNo
x2
⟶
∀ x3 .
x3
∈
SNoR
(
x0
x1
x2
)
⟶
∀ x4 : ο .
(
∀ x5 .
x5
∈
SNoL
x1
⟶
∀ x6 .
x6
∈
SNoR
x2
⟶
SNoLe
(
add_SNo
(
x0
x5
x2
)
(
x0
x1
x6
)
)
(
add_SNo
x3
(
x0
x5
x6
)
)
⟶
x4
)
⟶
(
∀ x5 .
x5
∈
SNoR
x1
⟶
∀ x6 .
x6
∈
SNoL
x2
⟶
SNoLe
(
add_SNo
(
x0
x5
x2
)
(
x0
x1
x6
)
)
(
add_SNo
x3
(
x0
x5
x6
)
)
⟶
x4
)
⟶
x4
)
⟶
(
∀ x1 x2 x3 x4 .
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNoLt
x3
x1
⟶
SNoLt
x4
x2
⟶
SNoLt
(
add_SNo
(
x0
x3
x2
)
(
x0
x1
x4
)
)
(
add_SNo
(
x0
x1
x2
)
(
x0
x3
x4
)
)
)
⟶
(
∀ x1 x2 x3 x4 .
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNoLe
x3
x1
⟶
SNoLe
x4
x2
⟶
SNoLe
(
add_SNo
(
x0
x3
x2
)
(
x0
x1
x4
)
)
(
add_SNo
(
x0
x1
x2
)
(
x0
x3
x4
)
)
)
⟶
∀ x1 x2 x3 .
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x1
)
⟶
x0
x4
(
x0
x2
x3
)
=
x0
(
x0
x4
x2
)
x3
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x2
)
⟶
x0
x1
(
x0
x4
x3
)
=
x0
(
x0
x1
x4
)
x3
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x3
)
⟶
x0
x1
(
x0
x2
x4
)
=
x0
(
x0
x1
x2
)
x4
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x1
)
⟶
∀ x5 .
x5
∈
SNoS_
(
SNoLev
x2
)
⟶
x0
x4
(
x0
x5
x3
)
=
x0
(
x0
x4
x5
)
x3
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x1
)
⟶
∀ x5 .
x5
∈
SNoS_
(
SNoLev
x3
)
⟶
x0
x4
(
x0
x2
x5
)
=
x0
(
x0
x4
x2
)
x5
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x2
)
⟶
∀ x5 .
x5
∈
SNoS_
(
SNoLev
x3
)
⟶
x0
x1
(
x0
x4
x5
)
=
x0
(
x0
x1
x4
)
x5
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x1
)
⟶
∀ x5 .
x5
∈
SNoS_
(
SNoLev
x2
)
⟶
∀ x6 .
x6
∈
SNoS_
(
SNoLev
x3
)
⟶
x0
x4
(
x0
x5
x6
)
=
x0
(
x0
x4
x5
)
x6
)
⟶
∀ x4 .
(
∀ x5 .
x5
∈
x4
⟶
∀ x6 : ο .
(
∀ x7 .
x7
∈
SNoL
x1
⟶
∀ x8 .
x8
∈
SNoR
(
x0
x2
x3
)
⟶
x5
=
add_SNo
(
x0
x7
(
x0
x2
x3
)
)
(
add_SNo
(
x0
x1
x8
)
(
minus_SNo
(
x0
x7
x8
)
)
)
⟶
x6
)
⟶
(
∀ x7 .
x7
∈
SNoR
x1
⟶
∀ x8 .
x8
∈
SNoL
(
x0
x2
x3
)
⟶
x5
=
add_SNo
(
x0
x7
(
x0
x2
x3
)
)
(
add_SNo
(
x0
x1
x8
)
(
minus_SNo
(
x0
x7
x8
)
)
)
⟶
x6
)
⟶
x6
)
⟶
∀ x5 .
x5
∈
x4
⟶
SNoLt
(
x0
(
x0
x1
x2
)
x3
)
x5
(proof)
Known
SNoLev_ind3
SNoLev_ind3
:
∀ x0 :
ι →
ι →
ι → ο
.
(
∀ x1 x2 x3 .
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x1
)
⟶
x0
x4
x2
x3
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x2
)
⟶
x0
x1
x4
x3
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x3
)
⟶
x0
x1
x2
x4
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x1
)
⟶
∀ x5 .
x5
∈
SNoS_
(
SNoLev
x2
)
⟶
x0
x4
x5
x3
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x1
)
⟶
∀ x5 .
x5
∈
SNoS_
(
SNoLev
x3
)
⟶
x0
x4
x2
x5
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x2
)
⟶
∀ x5 .
x5
∈
SNoS_
(
SNoLev
x3
)
⟶
x0
x1
x4
x5
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x1
)
⟶
∀ x5 .
x5
∈
SNoS_
(
SNoLev
x2
)
⟶
∀ x6 .
x6
∈
SNoS_
(
SNoLev
x3
)
⟶
x0
x4
x5
x6
)
⟶
x0
x1
x2
x3
)
⟶
∀ x1 x2 x3 .
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
x0
x1
x2
x3
Param
SNoCutP
SNoCutP
:
ι
→
ι
→
ο
Param
SNoCut
SNoCut
:
ι
→
ι
→
ι
Known
mul_SNo_eq_3
mul_SNo_eq_3
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 : ο .
(
∀ x3 x4 .
SNoCutP
x3
x4
⟶
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 : ο .
(
∀ x7 .
x7
∈
SNoL
x0
⟶
∀ x8 .
x8
∈
SNoL
x1
⟶
x5
=
add_SNo
(
mul_SNo
x7
x1
)
(
add_SNo
(
mul_SNo
x0
x8
)
(
minus_SNo
(
mul_SNo
x7
x8
)
)
)
⟶
x6
)
⟶
(
∀ x7 .
x7
∈
SNoR
x0
⟶
∀ x8 .
x8
∈
SNoR
x1
⟶
x5
=
add_SNo
(
mul_SNo
x7
x1
)
(
add_SNo
(
mul_SNo
x0
x8
)
(
minus_SNo
(
mul_SNo
x7
x8
)
)
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
x5
∈
SNoL
x0
⟶
∀ x6 .
x6
∈
SNoL
x1
⟶
add_SNo
(
mul_SNo
x5
x1
)
(
add_SNo
(
mul_SNo
x0
x6
)
(
minus_SNo
(
mul_SNo
x5
x6
)
)
)
∈
x3
)
⟶
(
∀ x5 .
x5
∈
SNoR
x0
⟶
∀ x6 .
x6
∈
SNoR
x1
⟶
add_SNo
(
mul_SNo
x5
x1
)
(
add_SNo
(
mul_SNo
x0
x6
)
(
minus_SNo
(
mul_SNo
x5
x6
)
)
)
∈
x3
)
⟶
(
∀ x5 .
x5
∈
x4
⟶
∀ x6 : ο .
(
∀ x7 .
x7
∈
SNoL
x0
⟶
∀ x8 .
x8
∈
SNoR
x1
⟶
x5
=
add_SNo
(
mul_SNo
x7
x1
)
(
add_SNo
(
mul_SNo
x0
x8
)
(
minus_SNo
(
mul_SNo
x7
x8
)
)
)
⟶
x6
)
⟶
(
∀ x7 .
x7
∈
SNoR
x0
⟶
∀ x8 .
x8
∈
SNoL
x1
⟶
x5
=
add_SNo
(
mul_SNo
x7
x1
)
(
add_SNo
(
mul_SNo
x0
x8
)
(
minus_SNo
(
mul_SNo
x7
x8
)
)
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
x5
∈
SNoL
x0
⟶
∀ x6 .
x6
∈
SNoR
x1
⟶
add_SNo
(
mul_SNo
x5
x1
)
(
add_SNo
(
mul_SNo
x0
x6
)
(
minus_SNo
(
mul_SNo
x5
x6
)
)
)
∈
x4
)
⟶
(
∀ x5 .
x5
∈
SNoR
x0
⟶
∀ x6 .
x6
∈
SNoL
x1
⟶
add_SNo
(
mul_SNo
x5
x1
)
(
add_SNo
(
mul_SNo
x0
x6
)
(
minus_SNo
(
mul_SNo
x5
x6
)
)
)
∈
x4
)
⟶
mul_SNo
x0
x1
=
SNoCut
x3
x4
⟶
x2
)
⟶
x2
Known
SNoCut_ext
SNoCut_ext
:
∀ x0 x1 x2 x3 .
SNoCutP
x0
x1
⟶
SNoCutP
x2
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
SNoLt
x4
(
SNoCut
x2
x3
)
)
⟶
(
∀ x4 .
x4
∈
x1
⟶
SNoLt
(
SNoCut
x2
x3
)
x4
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
SNoLt
x4
(
SNoCut
x0
x1
)
)
⟶
(
∀ x4 .
x4
∈
x3
⟶
SNoLt
(
SNoCut
x0
x1
)
x4
)
⟶
SNoCut
x0
x1
=
SNoCut
x2
x3
Known
mul_SNo_distrR
mul_SNo_distrR
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
(
add_SNo
x0
x1
)
x2
=
add_SNo
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x2
)
Known
mul_SNo_SNoL_interpolate_impred
mul_SNo_SNoL_interpolate_impred
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 .
x2
∈
SNoL
(
mul_SNo
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
SNoL
x0
⟶
∀ x5 .
x5
∈
SNoL
x1
⟶
SNoLe
(
add_SNo
x2
(
mul_SNo
x4
x5
)
)
(
add_SNo
(
mul_SNo
x4
x1
)
(
mul_SNo
x0
x5
)
)
⟶
x3
)
⟶
(
∀ x4 .
x4
∈
SNoR
x0
⟶
∀ x5 .
x5
∈
SNoR
x1
⟶
SNoLe
(
add_SNo
x2
(
mul_SNo
x4
x5
)
)
(
add_SNo
(
mul_SNo
x4
x1
)
(
mul_SNo
x0
x5
)
)
⟶
x3
)
⟶
x3
Known
mul_SNo_SNoR_interpolate_impred
mul_SNo_SNoR_interpolate_impred
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 .
x2
∈
SNoR
(
mul_SNo
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
SNoL
x0
⟶
∀ x5 .
x5
∈
SNoR
x1
⟶
SNoLe
(
add_SNo
(
mul_SNo
x4
x1
)
(
mul_SNo
x0
x5
)
)
(
add_SNo
x2
(
mul_SNo
x4
x5
)
)
⟶
x3
)
⟶
(
∀ x4 .
x4
∈
SNoR
x0
⟶
∀ x5 .
x5
∈
SNoL
x1
⟶
SNoLe
(
add_SNo
(
mul_SNo
x4
x1
)
(
mul_SNo
x0
x5
)
)
(
add_SNo
x2
(
mul_SNo
x4
x5
)
)
⟶
x3
)
⟶
x3
Known
mul_SNo_Lt
mul_SNo_Lt
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNoLt
x2
x0
⟶
SNoLt
x3
x1
⟶
SNoLt
(
add_SNo
(
mul_SNo
x2
x1
)
(
mul_SNo
x0
x3
)
)
(
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x2
x3
)
)
Known
mul_SNo_Le
mul_SNo_Le
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNoLe
x2
x0
⟶
SNoLe
x3
x1
⟶
SNoLe
(
add_SNo
(
mul_SNo
x2
x1
)
(
mul_SNo
x0
x3
)
)
(
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x2
x3
)
)
Theorem
mul_SNo_assoc
mul_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
(
mul_SNo
x0
x1
)
x2
(proof)