Search for blocks/addresses/...
Proofgold Term Root Disambiguation
∀ x0 :
ι →
ι → ι
.
(
∀ x1 x2 .
SNo
x1
⟶
SNo
x2
⟶
SNo
(
x0
x1
x2
)
)
⟶
(
∀ x1 x2 x3 .
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
x0
x1
(
add_SNo
x2
x3
)
=
add_SNo
(
x0
x1
x2
)
(
x0
x1
x3
)
)
⟶
(
∀ x1 x2 x3 .
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
x0
(
add_SNo
x1
x2
)
x3
=
add_SNo
(
x0
x1
x3
)
(
x0
x2
x3
)
)
⟶
(
∀ x1 x2 .
SNo
x1
⟶
SNo
x2
⟶
∀ x3 .
x3
∈
SNoL
(
x0
x1
x2
)
⟶
∀ x4 : ο .
(
∀ x5 .
x5
∈
SNoL
x1
⟶
∀ x6 .
x6
∈
SNoL
x2
⟶
SNoLe
(
add_SNo
x3
(
x0
x5
x6
)
)
(
add_SNo
(
x0
x5
x2
)
(
x0
x1
x6
)
)
⟶
x4
)
⟶
(
∀ x5 .
x5
∈
SNoR
x1
⟶
∀ x6 .
x6
∈
SNoR
x2
⟶
SNoLe
(
add_SNo
x3
(
x0
x5
x6
)
)
(
add_SNo
(
x0
x5
x2
)
(
x0
x1
x6
)
)
⟶
x4
)
⟶
x4
)
⟶
(
∀ x1 x2 .
SNo
x1
⟶
SNo
x2
⟶
∀ x3 .
x3
∈
SNoR
(
x0
x1
x2
)
⟶
∀ x4 : ο .
(
∀ x5 .
x5
∈
SNoL
x1
⟶
∀ x6 .
x6
∈
SNoR
x2
⟶
SNoLe
(
add_SNo
(
x0
x5
x2
)
(
x0
x1
x6
)
)
(
add_SNo
x3
(
x0
x5
x6
)
)
⟶
x4
)
⟶
(
∀ x5 .
x5
∈
SNoR
x1
⟶
∀ x6 .
x6
∈
SNoL
x2
⟶
SNoLe
(
add_SNo
(
x0
x5
x2
)
(
x0
x1
x6
)
)
(
add_SNo
x3
(
x0
x5
x6
)
)
⟶
x4
)
⟶
x4
)
⟶
(
∀ x1 x2 x3 x4 .
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNoLt
x3
x1
⟶
SNoLt
x4
x2
⟶
SNoLt
(
add_SNo
(
x0
x3
x2
)
(
x0
x1
x4
)
)
(
add_SNo
(
x0
x1
x2
)
(
x0
x3
x4
)
)
)
⟶
(
∀ x1 x2 x3 x4 .
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNoLe
x3
x1
⟶
SNoLe
x4
x2
⟶
SNoLe
(
add_SNo
(
x0
x3
x2
)
(
x0
x1
x4
)
)
(
add_SNo
(
x0
x1
x2
)
(
x0
x3
x4
)
)
)
⟶
∀ x1 x2 x3 .
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x1
)
⟶
x0
x4
(
x0
x2
x3
)
=
x0
(
x0
x4
x2
)
x3
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x2
)
⟶
x0
x1
(
x0
x4
x3
)
=
x0
(
x0
x1
x4
)
x3
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x3
)
⟶
x0
x1
(
x0
x2
x4
)
=
x0
(
x0
x1
x2
)
x4
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x1
)
⟶
∀ x5 .
x5
∈
SNoS_
(
SNoLev
x2
)
⟶
x0
x4
(
x0
x5
x3
)
=
x0
(
x0
x4
x5
)
x3
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x1
)
⟶
∀ x5 .
x5
∈
SNoS_
(
SNoLev
x3
)
⟶
x0
x4
(
x0
x2
x5
)
=
x0
(
x0
x4
x2
)
x5
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x2
)
⟶
∀ x5 .
x5
∈
SNoS_
(
SNoLev
x3
)
⟶
x0
x1
(
x0
x4
x5
)
=
x0
(
x0
x1
x4
)
x5
)
⟶
(
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x1
)
⟶
∀ x5 .
x5
∈
SNoS_
(
SNoLev
x2
)
⟶
∀ x6 .
x6
∈
SNoS_
(
SNoLev
x3
)
⟶
x0
x4
(
x0
x5
x6
)
=
x0
(
x0
x4
x5
)
x6
)
⟶
∀ x4 .
(
∀ x5 .
x5
∈
x4
⟶
∀ x6 : ο .
(
∀ x7 .
x7
∈
SNoL
x1
⟶
∀ x8 .
x8
∈
SNoR
(
x0
x2
x3
)
⟶
x5
=
add_SNo
(
x0
x7
(
x0
x2
x3
)
)
(
add_SNo
(
x0
x1
x8
)
(
minus_SNo
(
x0
x7
x8
)
)
)
⟶
x6
)
⟶
(
∀ x7 .
x7
∈
SNoR
x1
⟶
∀ x8 .
x8
∈
SNoL
(
x0
x2
x3
)
⟶
x5
=
add_SNo
(
x0
x7
(
x0
x2
x3
)
)
(
add_SNo
(
x0
x1
x8
)
(
minus_SNo
(
x0
x7
x8
)
)
)
⟶
x6
)
⟶
x6
)
⟶
∀ x5 .
x5
∈
x4
⟶
SNoLt
(
x0
(
x0
x1
x2
)
x3
)
x5
as obj
-
as prop
f249d..
mul_SNo_assoc_lem2
theory
HotG
stx
b160a..
address
TMRts..
mul_SNo_assoc_lem2