Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrJx3../cad7f..
PUg48../10de0..
vout
PrJx3../c62cd.. 5.90 bars
TMR2b../ed8aa.. ownership of ab61b.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMdXq../fc6d4.. ownership of fa31e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMWD8../e0269.. ownership of a83e4.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMaJo../8c0c4.. ownership of f1e13.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PULTs../ba203.. doc published by Pr4zB..
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known ce43d.. : ∀ x0 x1 : ι → ο . ∀ x2 x3 : ι → ι → ι → ι → ο . (∀ x4 . x0 x4∀ x5 . x1 x5∀ x6 . x0 x6∀ x7 . x0 x7not (x1 x7)x2 x4 x5 x6 x7)(∀ x4 x5 x6 x7 . x0 x4x0 x5x0 x6x0 x7∀ x8 : ο . (x2 x4 x5 x6 x7x8)(x3 x4 x5 x6 x7x8)(x2 x6 x7 x4 x5x8)x8)(∀ x4 x5 x6 x7 . x0 x4x0 x5x0 x6x0 x7x3 x4 x5 x6 x7x3 x6 x7 x4 x5)∀ x4 . x0 x4∀ x5 . x0 x5∀ x6 . x0 x6∀ x7 . x0 x7∀ x8 . x0 x8∀ x9 . x0 x9∀ x10 . x0 x10∀ x11 . x0 x11∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15x1 x5not (x1 x7)not (x1 x9)not (x1 x11)not (x1 x13)not (x1 x15)not (x3 x4 x5 x6 x7)not (x3 x4 x5 x8 x9)not (x3 x4 x5 x10 x11)not (x3 x4 x5 x12 x13)not (x3 x4 x5 x14 x15)not (x3 x6 x7 x8 x9)not (x3 x6 x7 x10 x11)not (x3 x6 x7 x12 x13)not (x3 x6 x7 x14 x15)not (x3 x8 x9 x10 x11)not (x3 x8 x9 x12 x13)not (x3 x8 x9 x14 x15)not (x3 x10 x11 x12 x13)not (x3 x10 x11 x14 x15)not (x3 x12 x13 x14 x15)∀ x16 : ο . (∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19∀ x20 . x0 x20∀ x21 . x0 x21∀ x22 . x0 x22∀ x23 . x0 x23∀ x24 . x0 x24∀ x25 . x0 x25∀ x26 . x0 x26x2 x4 x5 x17 x18x2 x17 x18 x19 x20x2 x19 x20 x21 x22x2 x21 x22 x23 x24x2 x23 x24 x25 x26not (x1 x18)not (x1 x20)not (x1 x22)not (x1 x24)not (x1 x26)not (x3 x4 x5 x17 x18)not (x3 x4 x5 x19 x20)not (x3 x4 x5 x21 x22)not (x3 x4 x5 x23 x24)not (x3 x4 x5 x25 x26)not (x3 x17 x18 x19 x20)not (x3 x17 x18 x21 x22)not (x3 x17 x18 x23 x24)not (x3 x17 x18 x25 x26)not (x3 x19 x20 x21 x22)not (x3 x19 x20 x23 x24)not (x3 x19 x20 x25 x26)not (x3 x21 x22 x23 x24)not (x3 x21 x22 x25 x26)not (x3 x23 x24 x25 x26)x16)x16
Known 24237.. : ∀ x0 x1 : ι → ο . ∀ x2 x3 x4 x5 x6 x7 . (∀ x8 : ι → ο . x8 x2x8 x3x8 x4x8 x5x8 x6x8 x7∀ x9 . x0 x9x8 x9)(∀ x8 . x0 x8not (x1 x8)∀ x9 : ι → ο . x9 x6x9 x7x9 x8)x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7∀ x8 : ι → ι → ι → ι → ο . (∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x7 x10 x6))(∀ x9 . x0 x9not (x8 x2 x9 x2 x9))(∀ x9 . x0 x9not (x8 x3 x9 x2 x9))(∀ x9 . x0 x9not (x8 x4 x9 x2 x9))(∀ x9 . x0 x9not (x8 x5 x9 x2 x9))(∀ x9 . x0 x9not (x8 x6 x9 x2 x9))(∀ x9 . x0 x9not (x8 x7 x9 x2 x9))(∀ x9 . x0 x9not (x8 x3 x9 x3 x9))(∀ x9 . x0 x9not (x8 x4 x9 x3 x9))(∀ x9 . x0 x9not (x8 x5 x9 x3 x9))(∀ x9 . x0 x9not (x8 x6 x9 x3 x9))(∀ x9 . x0 x9not (x8 x7 x9 x3 x9))(∀ x9 . x0 x9not (x8 x4 x9 x4 x9))(∀ x9 . x0 x9not (x8 x5 x9 x4 x9))(∀ x9 . x0 x9not (x8 x6 x9 x4 x9))(∀ x9 . x0 x9not (x8 x7 x9 x4 x9))(∀ x9 . x0 x9not (x8 x5 x9 x5 x9))(∀ x9 . x0 x9not (x8 x6 x9 x5 x9))(∀ x9 . x0 x9not (x8 x7 x9 x5 x9))(∀ x9 . x0 x9not (x8 x6 x9 x6 x9))(∀ x9 . x0 x9not (x8 x7 x9 x6 x9))(∀ x9 . x0 x9not (x8 x7 x9 x7 x9))∀ x9 : ι → ι → ι → ι → ο . (∀ x10 x11 . x0 x10x0 x11x9 x10 x11 x7 x7)(∀ x10 . x0 x10x9 x6 x6 x7 x10)(∀ x10 . x0 x10x9 x6 x7 x7 x10)x9 x2 x6 x4 x6x9 x2 x6 x4 x7x9 x2 x6 x5 x6x9 x2 x6 x5 x7x9 x2 x6 x7 x6x9 x2 x7 x4 x7x9 x2 x7 x5 x7x9 x3 x6 x3 x7x9 x3 x6 x5 x6x9 x3 x6 x5 x7x9 x3 x6 x6 x7x9 x3 x6 x7 x6x9 x3 x7 x5 x7x9 x4 x6 x2 x7x9 x4 x6 x4 x7x9 x5 x6 x2 x7x9 x5 x6 x3 x7x9 x6 x6 x3 x7x9 x7 x6 x2 x7x9 x7 x6 x3 x7x9 x7 x6 x6 x7(∀ x10 x11 . x0 x10x0 x11x9 x10 x11 x10 x11)(∀ x10 x11 x12 x13 . x0 x10x0 x11x0 x12x0 x13x9 x10 x11 x12 x13x9 x12 x13 x10 x11)(x4 = x5∀ x10 : ο . x10)(x5 = x6∀ x10 : ο . x10)(x6 = x7∀ x10 : ο . x10)∀ x10 . x0 x10∀ x11 . x0 x11∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19not (x1 x11)not (x1 x13)not (x1 x15)not (x1 x17)not (x1 x19)x8 x10 x11 x12 x13x8 x12 x13 x14 x15x8 x14 x15 x16 x17x8 x16 x17 x18 x19not (x9 x10 x11 x12 x13)not (x9 x10 x11 x14 x15)not (x9 x10 x11 x16 x17)not (x9 x10 x11 x18 x19)not (x9 x12 x13 x14 x15)not (x9 x12 x13 x16 x17)not (x9 x12 x13 x18 x19)not (x9 x14 x15 x16 x17)not (x9 x14 x15 x18 x19)not (x9 x16 x17 x18 x19)∀ x20 : ο . (x10 = x4x11 = x6x12 = x5x13 = x6x14 = x6x15 = x6x16 = x5x17 = x7x18 = x6x19 = x7x20)(x10 = x5x11 = x6x12 = x6x13 = x6x14 = x4x15 = x7x16 = x5x17 = x7x18 = x6x19 = x7x20)x20
Known FalseEFalseE : False∀ x0 : ο . x0
Theorem a83e4.. : ∀ x0 x1 : ι → ο . ∀ x2 x3 x4 x5 x6 x7 . (∀ x8 : ι → ο . x8 x2x8 x3x8 x4x8 x5x8 x6x8 x7∀ x9 . x0 x9x8 x9)(∀ x8 . x0 x8not (x1 x8)∀ x9 : ι → ο . x9 x6x9 x7x9 x8)x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x1 x2x1 x3x1 x4x1 x5not (x1 x6)not (x1 x7)∀ x8 : ι → ι → ι → ι → ο . (∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x6 x10 x2))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x7 x10 x2))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x4 x10 x3))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x6 x10 x3))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x7 x10 x3))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x6 x10 x4))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x7 x10 x4))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x6 x10 x5))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x7 x10 x5))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x7 x10 x6))(∀ x9 . x0 x9not (x8 x2 x9 x2 x9))(∀ x9 . x0 x9not (x8 x3 x9 x2 x9))(∀ x9 . x0 x9not (x8 x4 x9 x2 x9))(∀ x9 . x0 x9not (x8 x5 x9 x2 x9))(∀ x9 . x0 x9not (x8 x6 x9 x2 x9))(∀ x9 . x0 x9not (x8 x7 x9 x2 x9))(∀ x9 . x0 x9not (x8 x3 x9 x3 x9))(∀ x9 . x0 x9not (x8 x4 x9 x3 x9))(∀ x9 . x0 x9not (x8 x5 x9 x3 x9))(∀ x9 . x0 x9not (x8 x6 x9 x3 x9))(∀ x9 . x0 x9not (x8 x7 x9 x3 x9))(∀ x9 . x0 x9not (x8 x4 x9 x4 x9))(∀ x9 . x0 x9not (x8 x5 x9 x4 x9))(∀ x9 . x0 x9not (x8 x6 x9 x4 x9))(∀ x9 . x0 x9not (x8 x7 x9 x4 x9))(∀ x9 . x0 x9not (x8 x5 x9 x5 x9))(∀ x9 . x0 x9not (x8 x6 x9 x5 x9))(∀ x9 . x0 x9not (x8 x7 x9 x5 x9))(∀ x9 . x0 x9not (x8 x6 x9 x6 x9))(∀ x9 . x0 x9not (x8 x7 x9 x6 x9))(∀ x9 . x0 x9not (x8 x7 x9 x7 x9))∀ x9 : ι → ι → ι → ι → ο . (∀ x10 x11 . x0 x10x0 x11x9 x10 x11 x10 x11)(∀ x10 x11 x12 x13 . x0 x10x0 x11x0 x12x0 x13x9 x10 x11 x12 x13x9 x12 x13 x10 x11)(∀ x10 x11 . x0 x10x0 x11x9 x10 x11 x7 x7)(∀ x10 . x0 x10x9 x6 x6 x7 x10)(∀ x10 . x0 x10x9 x6 x7 x7 x10)x9 x2 x2 x4 x6x9 x2 x2 x5 x6x9 x3 x2 x4 x6x9 x3 x2 x5 x6x9 x4 x2 x4 x6x9 x4 x2 x5 x7x9 x4 x7 x6 x2x9 x5 x2 x5 x6x9 x6 x2 x6 x7x9 x2 x6 x4 x6x9 x2 x6 x4 x7x9 x2 x6 x5 x6x9 x2 x6 x5 x7x9 x2 x6 x7 x6x9 x2 x7 x4 x7x9 x2 x7 x5 x7x9 x3 x6 x3 x7x9 x3 x6 x5 x6x9 x3 x6 x5 x7x9 x3 x6 x6 x7x9 x3 x6 x7 x6x9 x3 x7 x5 x7x9 x4 x6 x2 x7x9 x4 x6 x4 x7x9 x5 x6 x2 x7x9 x5 x6 x3 x7x9 x6 x6 x3 x7x9 x7 x6 x2 x7x9 x7 x6 x3 x7x9 x7 x6 x6 x7(x4 = x5∀ x10 : ο . x10)(x5 = x6∀ x10 : ο . x10)(x6 = x7∀ x10 : ο . x10)∀ x10 . x0 x10∀ x11 . x0 x11∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19∀ x20 . x0 x20not (x1 x12)x8 x10 x2 x11 x12x8 x11 x12 x13 x14x8 x13 x14 x15 x16x8 x15 x16 x17 x18x8 x17 x18 x19 x20not (x9 x10 x2 x11 x12)not (x9 x10 x2 x13 x14)not (x9 x10 x2 x15 x16)not (x9 x10 x2 x17 x18)not (x9 x10 x2 x19 x20)not (x9 x11 x12 x13 x14)not (x9 x11 x12 x15 x16)not (x9 x11 x12 x17 x18)not (x9 x11 x12 x19 x20)not (x9 x13 x14 x15 x16)not (x9 x13 x14 x17 x18)not (x9 x13 x14 x19 x20)not (x9 x15 x16 x17 x18)not (x9 x15 x16 x19 x20)not (x9 x17 x18 x19 x20)False (proof)
Theorem ab61b.. : ∀ x0 x1 : ι → ο . ∀ x2 x3 x4 x5 x6 x7 . (∀ x8 : ι → ο . x8 x2x8 x3x8 x4x8 x5x8 x6x8 x7∀ x9 . x0 x9x8 x9)(∀ x8 . x0 x8not (x1 x8)∀ x9 : ι → ο . x9 x6x9 x7x9 x8)x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x1 x2x1 x3x1 x4x1 x5not (x1 x6)not (x1 x7)∀ x8 : ι → ι → ι → ι → ο . (∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x6 x10 x2))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x7 x10 x2))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x4 x10 x3))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x6 x10 x3))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x7 x10 x3))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x6 x10 x4))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x7 x10 x4))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x6 x10 x5))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x7 x10 x5))(∀ x9 . x0 x9∀ x10 . x0 x10not (x8 x9 x7 x10 x6))(∀ x9 . x0 x9not (x8 x2 x9 x2 x9))(∀ x9 . x0 x9not (x8 x3 x9 x2 x9))(∀ x9 . x0 x9not (x8 x4 x9 x2 x9))(∀ x9 . x0 x9not (x8 x5 x9 x2 x9))(∀ x9 . x0 x9not (x8 x6 x9 x2 x9))(∀ x9 . x0 x9not (x8 x7 x9 x2 x9))(∀ x9 . x0 x9not (x8 x3 x9 x3 x9))(∀ x9 . x0 x9not (x8 x4 x9 x3 x9))(∀ x9 . x0 x9not (x8 x5 x9 x3 x9))(∀ x9 . x0 x9not (x8 x6 x9 x3 x9))(∀ x9 . x0 x9not (x8 x7 x9 x3 x9))(∀ x9 . x0 x9not (x8 x4 x9 x4 x9))(∀ x9 . x0 x9not (x8 x5 x9 x4 x9))(∀ x9 . x0 x9not (x8 x6 x9 x4 x9))(∀ x9 . x0 x9not (x8 x7 x9 x4 x9))(∀ x9 . x0 x9not (x8 x5 x9 x5 x9))(∀ x9 . x0 x9not (x8 x6 x9 x5 x9))(∀ x9 . x0 x9not (x8 x7 x9 x5 x9))(∀ x9 . x0 x9not (x8 x6 x9 x6 x9))(∀ x9 . x0 x9not (x8 x7 x9 x6 x9))(∀ x9 . x0 x9not (x8 x7 x9 x7 x9))∀ x9 : ι → ι → ι → ι → ο . (∀ x10 x11 . x0 x10x0 x11x9 x10 x11 x10 x11)(∀ x10 x11 x12 x13 . x0 x10x0 x11x0 x12x0 x13x9 x10 x11 x12 x13x9 x12 x13 x10 x11)(∀ x10 x11 . x0 x10x0 x11x9 x10 x11 x7 x7)(∀ x10 . x0 x10x9 x6 x6 x7 x10)(∀ x10 . x0 x10x9 x6 x7 x7 x10)x9 x2 x2 x4 x6x9 x2 x2 x5 x6x9 x3 x2 x4 x6x9 x3 x2 x5 x6x9 x4 x2 x4 x6x9 x4 x2 x5 x7x9 x4 x7 x6 x2x9 x5 x2 x5 x6x9 x6 x2 x6 x7x9 x2 x6 x4 x6x9 x2 x6 x4 x7x9 x2 x6 x5 x6x9 x2 x6 x5 x7x9 x2 x6 x7 x6x9 x2 x7 x4 x7x9 x2 x7 x5 x7x9 x3 x6 x3 x7x9 x3 x6 x5 x6x9 x3 x6 x5 x7x9 x3 x6 x6 x7x9 x3 x6 x7 x6x9 x3 x7 x5 x7x9 x4 x6 x2 x7x9 x4 x6 x4 x7x9 x5 x6 x2 x7x9 x5 x6 x3 x7x9 x6 x6 x3 x7x9 x7 x6 x2 x7x9 x7 x6 x3 x7x9 x7 x6 x6 x7(x4 = x5∀ x10 : ο . x10)(x5 = x6∀ x10 : ο . x10)(x6 = x7∀ x10 : ο . x10)(∀ x10 : ι → ο . x10 x2x10 x3x10 x4x10 x5∀ x11 . x1 x11x10 x11)(∀ x10 . x0 x10∀ x11 . x1 x11∀ x12 . x0 x12∀ x13 . x0 x13not (x1 x13)x8 x10 x11 x12 x13)(∀ x10 x11 x12 x13 . x0 x10x0 x11x0 x12x0 x13∀ x14 : ο . (x8 x10 x11 x12 x13x14)(x9 x10 x11 x12 x13x14)(x8 x12 x13 x10 x11x14)x14)∀ x10 x11 x12 : ι → ι → ι . (∀ x13 . x0 x13∀ x14 . x0 x14x0 (x10 x13 x14))(∀ x13 . x0 x13∀ x14 . x1 x14x1 (x10 x13 x14))(∀ x13 . x0 x13∀ x14 . x0 x14x10 x13 (x10 x13 x14) = x14)(∀ x13 . x0 x13x10 x13 x2 = x3)(∀ x13 . x0 x13∀ x14 . x0 x14x0 (x11 x13 x14))(∀ x13 . x0 x13∀ x14 . x1 x14x1 (x11 x13 x14))(∀ x13 . x0 x13∀ x14 . x0 x14x11 x13 (x11 x13 x14) = x14)(∀ x13 . x0 x13x11 x13 x2 = x4)(∀ x13 . x0 x13∀ x14 . x0 x14x0 (x12 x13 x14))(∀ x13 . x0 x13∀ x14 . x1 x14x1 (x12 x13 x14))(∀ x13 . x0 x13∀ x14 . x0 x14x12 x13 (x12 x13 x14) = x14)(∀ x13 . x0 x13x12 x13 x2 = x5)(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16not (x9 x13 x14 x15 x16)not (x9 x13 (x10 x13 x14) x15 (x10 x15 x16)))(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16not (x9 x13 x14 x15 x16)not (x9 x13 (x11 x13 x14) x15 (x11 x15 x16)))(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16not (x9 x13 x14 x15 x16)not (x9 x13 (x12 x13 x14) x15 (x12 x15 x16)))∀ x13 . x1 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19∀ x20 . x0 x20∀ x21 . x0 x21∀ x22 . x0 x22∀ x23 . x0 x23∀ x24 . x0 x24not (x1 x16)x8 x14 x13 x15 x16x8 x15 x16 x17 x18x8 x17 x18 x19 x20x8 x19 x20 x21 x22x8 x21 x22 x23 x24not (x9 x14 x13 x15 x16)not (x9 x14 x13 x17 x18)not (x9 x14 x13 x19 x20)not (x9 x14 x13 x21 x22)not (x9 x14 x13 x23 x24)not (x9 x15 x16 x17 x18)not (x9 x15 x16 x19 x20)not (x9 x15 x16 x21 x22)not (x9 x15 x16 x23 x24)not (x9 x17 x18 x19 x20)not (x9 x17 x18 x21 x22)not (x9 x17 x18 x23 x24)not (x9 x19 x20 x21 x22)not (x9 x19 x20 x23 x24)not (x9 x21 x22 x23 x24)False (proof)