Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrDya../e616b..
PUezu../db2de..
vout
PrDya../562d3.. 300.98 bars
TMZTv../d9891.. ownership of 09af7.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMHRf../e06c7.. ownership of 4124a.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMbQ8../71993.. ownership of a1a52.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMQ5m../f48eb.. ownership of 19a26.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
PrBQv../4ab45.. 200.00 bars
PUUZ8../b755b.. doc published by Pr5Zc..
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param omegaomega : ι
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Param add_natadd_nat : ιιι
Param mul_natmul_nat : ιιι
Definition b3e62..equiv_nat_mod := λ x0 x1 x2 . and (and (and (x0omega) (x1omega)) (x2omega)) (or (∀ x3 : ο . (∀ x4 . and (x4omega) (add_nat x0 (mul_nat x4 x2) = x1)x3)x3) (∀ x3 : ο . (∀ x4 . and (x4omega) (add_nat x1 (mul_nat x4 x2) = x0)x3)x3))
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Param ordsuccordsucc : ιι
Definition divides_natdivides_nat := λ x0 x1 . and (and (x0omega) (x1omega)) (∀ x2 : ο . (∀ x3 . and (x3omega) (mul_nat x0 x3 = x1)x2)x2)
Definition prime_natprime_nat := λ x0 . and (and (x0omega) (1x0)) (∀ x1 . x1omegadivides_nat x1 x0or (x1 = 1) (x1 = x0))
Known c14f2.. : not (prime_nat 4)
Param nat_pnat_p : ιο
Known 92637.. : ∀ x0 . nat_p x0mul_nat x0 x0 = x0or (x0 = 0) (x0 = 1)
Param equipequip : ιιο
Param exp_natexp_nat : ιιι
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Known 17a87.. : ∀ x0 . nat_p x0∀ x1 . nat_p x1equip (exp_nat x0 x1) (setexp x0 x1)
Param SNoSNo : ιο
Param mul_SNomul_SNo : ιιι
Known 24b4c.. : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3mul_SNo x0 (mul_SNo x1 (mul_SNo x2 x3)) = mul_SNo x1 (mul_SNo x2 (mul_SNo x0 x3))
Param add_SNoadd_SNo : ιιι
Param minus_SNominus_SNo : ιι
Param lamSigma : ι(ιι) → ι
Param If_iIf_i : οιιι
Param apap : ιιι
Param SNoLtSNoLt : ιιο
Known 91770.. : ∀ x0 x1 x2 : ι → ι → ι → ι . ∀ x3 x4 x5 : ι → ι → ι → ο . (∀ x6 x7 x8 . x3 x6 x7 x8x0 x6 x7 x8 = add_SNo x6 (mul_SNo 2 x8))(∀ x6 x7 x8 . x3 x6 x7 x8x1 x6 x7 x8 = x8)(∀ x6 x7 x8 . x3 x6 x7 x8x2 x6 x7 x8 = add_SNo x7 (minus_SNo (add_SNo x6 x8)))(∀ x6 x7 x8 . x4 x6 x7 x8x0 x6 x7 x8 = add_SNo (mul_SNo 2 x7) (minus_SNo x6))(∀ x6 x7 x8 . x4 x6 x7 x8x1 x6 x7 x8 = x7)(∀ x6 x7 x8 . x4 x6 x7 x8x2 x6 x7 x8 = add_SNo x6 (add_SNo x8 (minus_SNo x7)))(∀ x6 x7 x8 . x5 x6 x7 x8x0 x6 x7 x8 = add_SNo x6 (minus_SNo (mul_SNo 2 x7)))(∀ x6 x7 x8 . x5 x6 x7 x8x1 x6 x7 x8 = add_SNo x6 (add_SNo x8 (minus_SNo x7)))(∀ x6 x7 x8 . x5 x6 x7 x8x2 x6 x7 x8 = x7)(∀ x6 x7 x8 . add_SNo x6 x8x7x3 x6 x7 x8)(∀ x6 x7 x8 . x3 x6 x7 x8add_SNo x6 x8x7)(∀ x6 x7 x8 . x7add_SNo x6 x8x6mul_SNo 2 x7x4 x6 x7 x8)(∀ x6 x7 x8 . x4 x6 x7 x8x7add_SNo x6 x8)(∀ x6 x7 x8 . x4 x6 x7 x8x6mul_SNo 2 x7)(∀ x6 x7 x8 . x7add_SNo x6 x8mul_SNo 2 x7x6x5 x6 x7 x8)(∀ x6 x7 x8 . x5 x6 x7 x8x7add_SNo x6 x8)(∀ x6 x7 x8 . x5 x6 x7 x8mul_SNo 2 x7x6)∀ x6 . x6omega∀ x7 . equip x7 x6(∀ x8 . x8x7lam 3 (λ x10 . If_i (x10 = 0) (ap x8 0) (If_i (x10 = 1) (ap x8 1) (ap x8 2))) = x8)(∀ x8 x9 x10 . lam 3 (λ x11 . If_i (x11 = 0) x8 (If_i (x11 = 1) x9 x10))x7∀ x11 : ο . (x8omegax9omegax10omegaSNoLt 0 x8SNoLt 0 x9SNoLt 0 x10(add_SNo x8 x10 = x9∀ x12 : ο . x12)(x8 = mul_SNo 2 x9∀ x12 : ο . x12)lam 3 (λ x12 . If_i (x12 = 0) x8 (If_i (x12 = 1) x10 x9))x7x11)x11)(∀ x8 x9 x10 x11 . x11omega∀ x12 . x12omega∀ x13 . x13omegalam 3 (λ x14 . If_i (x14 = 0) x8 (If_i (x14 = 1) x9 x10))x7add_SNo (mul_SNo x11 x11) (mul_SNo 4 (mul_SNo x12 x13)) = add_SNo (mul_SNo x8 x8) (mul_SNo 4 (mul_SNo x9 x10))lam 3 (λ x14 . If_i (x14 = 0) x11 (If_i (x14 = 1) x12 x13))x7)∀ x8 x9 x10 . lam 3 (λ x11 . If_i (x11 = 0) x8 (If_i (x11 = 1) x9 x10))x7x0 x8 x9 x10 = x8x1 x8 x9 x10 = x9x2 x8 x9 x10 = x10(∀ x11 x12 x13 . lam 3 (λ x14 . If_i (x14 = 0) x11 (If_i (x14 = 1) x12 x13))x7x0 x11 x12 x13 = x11x1 x11 x12 x13 = x12x2 x11 x12 x13 = x13and (and (x11 = x8) (x12 = x9)) (x13 = x10))∀ x11 : ο . (∀ x12 . (∀ x13 : ο . (∀ x14 . lam 3 (λ x15 . If_i (x15 = 0) x12 (If_i (x15 = 1) x14 x14))x7x13)x13)x11)x11
Known c188a.. : SNoLt 1 4
Param ordinalordinal : ιο
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param SepSep : ι(ιο) → ι
Definition finitefinite := λ x0 . ∀ x1 : ο . (∀ x2 . and (x2omega) (equip x0 x2)x1)x1
Known Subq_finiteSubq_finite : ∀ x0 . finite x0∀ x1 . x1x0finite x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known 4f402..exp_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (exp_nat x0 x1)
Known nat_3nat_3 : nat_p 3
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Param SNoLeSNoLe : ιιο
Known Pi_etaPi_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1lam x0 (ap x2) = x2
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Known cases_3cases_3 : ∀ x0 . x03∀ x1 : ι → ο . x1 0x1 1x1 2x1 x0
Known ordinal_In_Or_Subqordinal_In_Or_Subq : ∀ x0 x1 . ordinal x0ordinal x1or (x0x1) (x1x0)
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Known FalseEFalseE : False∀ x0 : ο . x0
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Known SNoLeLt_traSNoLeLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLt x1 x2SNoLt x0 x2
Known SNoLe_traSNoLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLe x1 x2SNoLe x0 x2
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Known mul_SNo_oneRmul_SNo_oneR : ∀ x0 . SNo x0mul_SNo x0 1 = x0
Known nonneg_mul_SNo_Lenonneg_mul_SNo_Le : ∀ x0 x1 x2 . SNo x0SNoLe 0 x0SNo x1SNo x2SNoLe x1 x2SNoLe (mul_SNo x0 x1) (mul_SNo x0 x2)
Known ordinal_Subq_SNoLeordinal_Subq_SNoLe : ∀ x0 x1 . ordinal x0ordinal x1x0x1SNoLe x0 x1
Known ordinal_Emptyordinal_Empty : ordinal 0
Known Subq_EmptySubq_Empty : ∀ x0 . 0x0
Known SNo_1SNo_1 : SNo 1
Known mul_SNo_commul_SNo_com : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_SNo x1 x0
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Known add_SNo_Lt2add_SNo_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x1 x2SNoLt (add_SNo x0 x1) (add_SNo x0 x2)
Known SNo_0SNo_0 : SNo 0
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Known SNoLt_0_1SNoLt_0_1 : SNoLt 0 1
Known SNoLtLe_traSNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2
Known 48da5.. : SNo 4
Known nat_p_SNonat_p_SNo : ∀ x0 . nat_p x0SNo x0
Known nat_4nat_4 : nat_p 4
Known pos_mul_SNo_Ltpos_mul_SNo_Lt : ∀ x0 x1 x2 . SNo x0SNoLt 0 x0SNo x1SNo x2SNoLt x1 x2SNoLt (mul_SNo x0 x1) (mul_SNo x0 x2)
Known add_SNo_0Ladd_SNo_0L : ∀ x0 . SNo x0add_SNo 0 x0 = x0
Known add_SNo_Lt1add_SNo_Lt1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x2SNoLt (add_SNo x0 x1) (add_SNo x2 x1)
Known omega_SNoomega_SNo : ∀ x0 . x0omegaSNo x0
Known nat_1nat_1 : nat_p 1
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known mul_nat_mul_SNomul_nat_mul_SNo : ∀ x0 . x0omega∀ x1 . x1omegamul_nat x0 x1 = mul_SNo x0 x1
Definition nInnIn := λ x0 x1 . not (x0x1)
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known mul_SNo_zeroRmul_SNo_zeroR : ∀ x0 . SNo x0mul_SNo x0 0 = 0
Known cases_1cases_1 : ∀ x0 . x01∀ x1 : ι → ο . x1 0x1 x0
Known mul_SNo_zeroLmul_SNo_zeroL : ∀ x0 . SNo x0mul_SNo 0 x0 = 0
Known neq_4_1neq_4_1 : 4 = 1∀ x0 : ο . x0
Known SepE2SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x1 x2
Known mul_SNo_In_omegamul_SNo_In_omega : ∀ x0 . x0omega∀ x1 . x1omegamul_SNo x0 x1omega
Known In_2_3In_2_3 : 23
Known In_1_3In_1_3 : 13
Known In_0_3In_0_3 : 03
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Known In_no2cycleIn_no2cycle : ∀ x0 x1 . x0x1x1x0False
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Known add_nat_add_SNoadd_nat_add_SNo : ∀ x0 . x0omega∀ x1 . x1omegaadd_nat x0 x1 = add_SNo x0 x1
Known add_SNo_Le2add_SNo_Le2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x1 x2SNoLe (add_SNo x0 x1) (add_SNo x0 x2)
Known ordinal_In_SNoLtordinal_In_SNoLt : ∀ x0 . ordinal x0∀ x1 . x1x0SNoLt x1 x0
Known Pi_extPi_ext : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1∀ x3 . x3Pi x0 x1(∀ x4 . x4x0ap x2 x4 = ap x3 x4)x2 = x3
Known tuple_3_in_A_3tuple_3_in_A_3 : ∀ x0 x1 x2 x3 . x0x3x1x3x2x3lam 3 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) x1 x2))setexp x3 3
Known tuple_3_0_eqtuple_3_0_eq : ∀ x0 x1 x2 . ap (lam 3 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) x1 x2))) 0 = x0
Known tuple_3_1_eqtuple_3_1_eq : ∀ x0 x1 x2 . ap (lam 3 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) x1 x2))) 1 = x1
Known tuple_3_2_eqtuple_3_2_eq : ∀ x0 x1 x2 . ap (lam 3 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) x1 x2))) 2 = x2
Known ordinal_trichotomy_or_impredordinal_trichotomy_or_impred : ∀ x0 x1 . ordinal x0ordinal x1∀ x2 : ο . (x0x1x2)(x0 = x1x2)(x1x0x2)x2
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known SNo_2SNo_2 : SNo 2
Known SNoLt_1_2SNoLt_1_2 : SNoLt 1 2
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known mul_SNo_oneLmul_SNo_oneL : ∀ x0 . SNo x0mul_SNo 1 x0 = x0
Known add_SNo_1_1_2add_SNo_1_1_2 : add_SNo 1 1 = 2
Known add_SNo_minus_R2add_SNo_minus_R2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (add_SNo x0 x1) (minus_SNo x1) = x0
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known add_SNo_minus_SNo_prop2add_SNo_minus_SNo_prop2 : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 (add_SNo (minus_SNo x0) x1) = x1
Known c8949.. : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = 0or (x0 = 0) (x1 = 0)
Known add_SNo_cancel_Ladd_SNo_cancel_L : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 x1 = add_SNo x0 x2x1 = x2
Known neq_2_0neq_2_0 : 2 = 0∀ x0 : ο . x0
Known mul_SNo_nonzero_cancelmul_SNo_nonzero_cancel_L : ∀ x0 x1 x2 . SNo x0(x0 = 0∀ x3 : ο . x3)SNo x1SNo x2mul_SNo x0 x1 = mul_SNo x0 x2x1 = x2
Known neq_4_0neq_4_0 : 4 = 0∀ x0 : ο . x0
Known add_SNo_In_omegaadd_SNo_In_omega : ∀ x0 . x0omega∀ x1 . x1omegaadd_SNo x0 x1omega
Known mul_SNo_distrLmul_SNo_distrL : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (add_SNo x1 x2) = add_SNo (mul_SNo x0 x1) (mul_SNo x0 x2)
Known mul_SNo_com_3_0_1mul_SNo_com_3_0_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo x1 (mul_SNo x0 x2)
Known d67ed.. : ∀ x0 . SNo x0mul_SNo 2 x0 = add_SNo x0 x0
Known add_SNo_minus_R2'add_SNo_minus_R2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (add_SNo x0 (minus_SNo x1)) x1 = x0
Known nat_2nat_2 : nat_p 2
Known mul_SNo_com_4_inner_midmul_SNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3mul_SNo (mul_SNo x0 x1) (mul_SNo x2 x3) = mul_SNo (mul_SNo x0 x2) (mul_SNo x1 x3)
Known ecc46.. : mul_SNo 2 2 = 4
Known ordinal_SNoLt_Inordinal_SNoLt_In : ∀ x0 x1 . ordinal x0ordinal x1SNoLt x0 x1x0x1
Known nat_invnat_inv : ∀ x0 . nat_p x0or (x0 = 0) (∀ x1 : ο . (∀ x2 . and (nat_p x2) (x0 = ordsucc x2)x1)x1)
Known ordinal_ordsuccordinal_ordsucc : ∀ x0 . ordinal x0ordinal (ordsucc x0)
Known nat_0_in_ordsuccnat_0_in_ordsucc : ∀ x0 . nat_p x00ordsucc x0
Known In_1_2In_1_2 : 12
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known 8b4bf.. : ∀ x0 x1 . SNo x0SNo x1mul_SNo (add_SNo x0 x1) (add_SNo x0 x1) = add_SNo (mul_SNo x0 x0) (add_SNo (mul_SNo 2 (mul_SNo x0 x1)) (mul_SNo x1 x1))
Known mul_SNo_distrRmul_SNo_distrR : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo (add_SNo x0 x1) x2 = add_SNo (mul_SNo x0 x2) (mul_SNo x1 x2)
Known mul_SNo_assocmul_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo (mul_SNo x0 x1) x2
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Known Sep_SubqSep_Subq : ∀ x0 . ∀ x1 : ι → ο . Sep x0 x1x0
Known mul_nat_1Rmul_nat_1R : ∀ x0 . mul_nat x0 1 = x0
Theorem a1a52.. : ∀ x0 . x0omegaprime_nat x0b3e62.. x0 1 4∀ x1 : ο . (∀ x2 . and (x2omega) (∀ x3 : ο . (∀ x4 . and (x4omega) (x0 = add_SNo (mul_SNo x2 x2) (mul_SNo x4 x4))x3)x3)x1)x1 (proof)
Theorem 09af7.. : ∀ x0 . x0omegaprime_nat x0b3e62.. x0 1 4∀ x1 : ο . (∀ x2 . and (x2omega) (∀ x3 : ο . (∀ x4 . and (x4omega) (x0 = add_nat (mul_nat x2 x2) (mul_nat x4 x4))x3)x3)x1)x1 (proof)