Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrMnw..
/
8cc4e..
PUhKr..
/
f32a6..
vout
PrMnw..
/
a9df4..
0.10 bars
TMP9C..
/
fe241..
ownership of
e6e49..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbKv..
/
cb940..
ownership of
cfd56..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdCN..
/
a468a..
ownership of
51834..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXcJ..
/
0d6df..
ownership of
8939b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVv9..
/
820d7..
ownership of
d3076..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUaZ..
/
5964b..
ownership of
7fdd9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLoy..
/
cfd67..
ownership of
82a48..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKCH..
/
f7ea7..
ownership of
644bd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUUZ..
/
0eda7..
ownership of
c06fb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSMn..
/
675c3..
ownership of
cefa4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNgM..
/
e4ff8..
ownership of
6adc1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXVB..
/
6b441..
ownership of
a05c2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMT9L..
/
9a509..
ownership of
af9c2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNGs..
/
c0084..
ownership of
eea79..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPpb..
/
8ccb5..
ownership of
769c3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGeS..
/
8e617..
ownership of
8847d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbQ2..
/
b28ad..
ownership of
00015..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEpT..
/
287f9..
ownership of
a97aa..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWC6..
/
27516..
ownership of
2e626..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRtE..
/
96bab..
ownership of
e93ee..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZHg..
/
ebe40..
ownership of
46a4c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMawX..
/
281ba..
ownership of
af5ad..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMGX..
/
1699e..
ownership of
0e469..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSQQ..
/
071b0..
ownership of
5ac4f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHoh..
/
ce1bd..
ownership of
15bd3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVt5..
/
68056..
ownership of
7d97a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEyo..
/
ad19c..
ownership of
35bda..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMazy..
/
f90b2..
ownership of
0d4d6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMGM..
/
bcd9e..
ownership of
f265d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaTu..
/
4df55..
ownership of
07d8d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUvC..
/
93318..
ownership of
2b940..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYjK..
/
41645..
ownership of
d7c2b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYVm..
/
268f4..
ownership of
8504e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPaW..
/
b8c97..
ownership of
8c1bf..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTHi..
/
0bb30..
ownership of
00081..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUTN..
/
10b30..
ownership of
e7f2c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PULKN..
/
3d924..
doc published by
PrCmT..
Known
df_ordt__df_xrs__df_qtop__df_imas__df_qus__df_xps__df_mre__df_mrc__df_mri__df_acs__df_cat__df_cid__df_homf__df_comf__df_oppc__df_mon__df_epi__df_sect
:
∀ x0 : ο .
(
wceq
cordt
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cfv
(
cfv
(
cun
(
csn
(
cdm
(
cv
x1
)
)
)
(
crn
(
cun
(
cmpt
(
λ x2 .
cdm
(
cv
x1
)
)
(
λ x2 .
crab
(
λ x3 .
wn
(
wbr
(
cv
x3
)
(
cv
x2
)
(
cv
x1
)
)
)
(
λ x3 .
cdm
(
cv
x1
)
)
)
)
(
cmpt
(
λ x2 .
cdm
(
cv
x1
)
)
(
λ x2 .
crab
(
λ x3 .
wn
(
wbr
(
cv
x2
)
(
cv
x3
)
(
cv
x1
)
)
)
(
λ x3 .
cdm
(
cv
x1
)
)
)
)
)
)
)
cfi
)
ctg
)
)
⟶
wceq
cxrs
(
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
cxr
)
(
cop
(
cfv
cnx
cplusg
)
cxad
)
(
cop
(
cfv
cnx
cmulr
)
cxmu
)
)
(
ctp
(
cop
(
cfv
cnx
cts
)
(
cfv
cle
cordt
)
)
(
cop
(
cfv
cnx
cple
)
cle
)
(
cop
(
cfv
cnx
cds
)
(
cmpt2
(
λ x1 x2 .
cxr
)
(
λ x1 x2 .
cxr
)
(
λ x1 x2 .
cif
(
wbr
(
cv
x1
)
(
cv
x2
)
cle
)
(
co
(
cv
x2
)
(
cxne
(
cv
x1
)
)
cxad
)
(
co
(
cv
x1
)
(
cxne
(
cv
x2
)
)
cxad
)
)
)
)
)
)
⟶
wceq
cqtop
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
crab
(
λ x3 .
wcel
(
cin
(
cima
(
ccnv
(
cv
x2
)
)
(
cv
x3
)
)
(
cuni
(
cv
x1
)
)
)
(
cv
x1
)
)
(
λ x3 .
cpw
(
cima
(
cv
x2
)
(
cuni
(
cv
x1
)
)
)
)
)
)
⟶
wceq
cimas
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
csb
(
cfv
(
cv
x2
)
cbs
)
(
λ x3 .
cun
(
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
crn
(
cv
x1
)
)
)
(
cop
(
cfv
cnx
cplusg
)
(
ciun
(
λ x4 .
cv
x3
)
(
λ x4 .
ciun
(
λ x5 .
cv
x3
)
(
λ x5 .
csn
(
cop
(
cop
(
cfv
(
cv
x4
)
(
cv
x1
)
)
(
cfv
(
cv
x5
)
(
cv
x1
)
)
)
(
cfv
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x2
)
cplusg
)
)
(
cv
x1
)
)
)
)
)
)
)
(
cop
(
cfv
cnx
cmulr
)
(
ciun
(
λ x4 .
cv
x3
)
(
λ x4 .
ciun
(
λ x5 .
cv
x3
)
(
λ x5 .
csn
(
cop
(
cop
(
cfv
(
cv
x4
)
(
cv
x1
)
)
(
cfv
(
cv
x5
)
(
cv
x1
)
)
)
(
cfv
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x2
)
cmulr
)
)
(
cv
x1
)
)
)
)
)
)
)
)
(
ctp
(
cop
(
cfv
cnx
csca
)
(
cfv
(
cv
x2
)
csca
)
)
(
cop
(
cfv
cnx
cvsca
)
(
ciun
(
λ x4 .
cv
x3
)
(
λ x4 .
cmpt2
(
λ x5 x6 .
cfv
(
cfv
(
cv
x2
)
csca
)
cbs
)
(
λ x5 x6 .
csn
(
cfv
(
cv
x4
)
(
cv
x1
)
)
)
(
λ x5 x6 .
cfv
(
co
(
cv
x5
)
(
cv
x4
)
(
cfv
(
cv
x2
)
cvsca
)
)
(
cv
x1
)
)
)
)
)
(
cop
(
cfv
cnx
cip
)
(
ciun
(
λ x4 .
cv
x3
)
(
λ x4 .
ciun
(
λ x5 .
cv
x3
)
(
λ x5 .
csn
(
cop
(
cop
(
cfv
(
cv
x4
)
(
cv
x1
)
)
(
cfv
(
cv
x5
)
(
cv
x1
)
)
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x2
)
cip
)
)
)
)
)
)
)
)
)
(
ctp
(
cop
(
cfv
cnx
cts
)
(
co
(
cfv
(
cv
x2
)
ctopn
)
(
cv
x1
)
cqtop
)
)
(
cop
(
cfv
cnx
cple
)
(
ccom
(
ccom
(
cv
x1
)
(
cfv
(
cv
x2
)
cple
)
)
(
ccnv
(
cv
x1
)
)
)
)
(
cop
(
cfv
cnx
cds
)
(
cmpt2
(
λ x4 x5 .
crn
(
cv
x1
)
)
(
λ x4 x5 .
crn
(
cv
x1
)
)
(
λ x4 x5 .
cinf
(
ciun
(
λ x6 .
cn
)
(
λ x6 .
crn
(
cmpt
(
λ x7 .
crab
(
λ x8 .
w3a
(
wceq
(
cfv
(
cfv
(
cfv
c1
(
cv
x8
)
)
c1st
)
(
cv
x1
)
)
(
cv
x4
)
)
(
wceq
(
cfv
(
cfv
(
cfv
(
cv
x6
)
(
cv
x8
)
)
c2nd
)
(
cv
x1
)
)
(
cv
x5
)
)
(
wral
(
λ x9 .
wceq
(
cfv
(
cfv
(
cfv
(
cv
x9
)
(
cv
x8
)
)
c2nd
)
(
cv
x1
)
)
(
cfv
(
cfv
(
cfv
(
co
(
cv
x9
)
c1
caddc
)
(
cv
x8
)
)
c1st
)
(
cv
x1
)
)
)
(
λ x9 .
co
c1
(
co
(
cv
x6
)
c1
cmin
)
cfz
)
)
)
(
λ x8 .
co
(
cxp
(
cv
x3
)
(
cv
x3
)
)
(
co
c1
(
cv
x6
)
cfz
)
cmap
)
)
(
λ x7 .
co
cxrs
(
ccom
(
cfv
(
cv
x2
)
cds
)
(
cv
x7
)
)
cgsu
)
)
)
)
cxr
clt
)
)
)
)
)
)
)
⟶
wceq
cqus
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
co
(
cmpt
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x3 .
cec
(
cv
x3
)
(
cv
x2
)
)
)
(
cv
x1
)
cimas
)
)
⟶
wceq
cxps
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
co
(
ccnv
(
cmpt2
(
λ x3 x4 .
cfv
(
cv
x1
)
cbs
)
(
λ x3 x4 .
cfv
(
cv
x2
)
cbs
)
(
λ x3 x4 .
ccnv
(
co
(
csn
(
cv
x3
)
)
(
csn
(
cv
x4
)
)
ccda
)
)
)
)
(
co
(
cfv
(
cv
x1
)
csca
)
(
ccnv
(
co
(
csn
(
cv
x1
)
)
(
csn
(
cv
x2
)
)
ccda
)
)
cprds
)
cimas
)
)
⟶
wceq
cmre
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wa
(
wcel
(
cv
x1
)
(
cv
x2
)
)
(
wral
(
λ x3 .
wne
(
cv
x3
)
c0
⟶
wcel
(
cint
(
cv
x3
)
)
(
cv
x2
)
)
(
λ x3 .
cpw
(
cv
x2
)
)
)
)
(
λ x2 .
cpw
(
cpw
(
cv
x1
)
)
)
)
)
⟶
wceq
cmrc
(
cmpt
(
λ x1 .
cuni
(
crn
cmre
)
)
(
λ x1 .
cmpt
(
λ x2 .
cpw
(
cuni
(
cv
x1
)
)
)
(
λ x2 .
cint
(
crab
(
λ x3 .
wss
(
cv
x2
)
(
cv
x3
)
)
(
λ x3 .
cv
x1
)
)
)
)
)
⟶
wceq
cmri
(
cmpt
(
λ x1 .
cuni
(
crn
cmre
)
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wn
(
wcel
(
cv
x3
)
(
cfv
(
cdif
(
cv
x2
)
(
csn
(
cv
x3
)
)
)
(
cfv
(
cv
x1
)
cmrc
)
)
)
)
(
λ x3 .
cv
x2
)
)
(
λ x2 .
cpw
(
cuni
(
cv
x1
)
)
)
)
)
⟶
wceq
cacs
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wex
(
λ x3 .
wa
(
wf
(
cpw
(
cv
x1
)
)
(
cpw
(
cv
x1
)
)
(
cv
x3
)
)
(
wral
(
λ x4 .
wb
(
wcel
(
cv
x4
)
(
cv
x2
)
)
(
wss
(
cuni
(
cima
(
cv
x3
)
(
cin
(
cpw
(
cv
x4
)
)
cfn
)
)
)
(
cv
x4
)
)
)
(
λ x4 .
cpw
(
cv
x1
)
)
)
)
)
(
λ x2 .
cfv
(
cv
x1
)
cmre
)
)
)
⟶
wceq
ccat
(
cab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wral
(
λ x5 .
wa
(
wrex
(
λ x6 .
wral
(
λ x7 .
wa
(
wral
(
λ x8 .
wceq
(
co
(
cv
x6
)
(
cv
x8
)
(
co
(
cop
(
cv
x7
)
(
cv
x5
)
)
(
cv
x5
)
(
cv
x4
)
)
)
(
cv
x8
)
)
(
λ x8 .
co
(
cv
x7
)
(
cv
x5
)
(
cv
x3
)
)
)
(
wral
(
λ x8 .
wceq
(
co
(
cv
x8
)
(
cv
x6
)
(
co
(
cop
(
cv
x5
)
(
cv
x5
)
)
(
cv
x7
)
(
cv
x4
)
)
)
(
cv
x8
)
)
(
λ x8 .
co
(
cv
x5
)
(
cv
x7
)
(
cv
x3
)
)
)
)
(
λ x7 .
cv
x2
)
)
(
λ x6 .
co
(
cv
x5
)
(
cv
x5
)
(
cv
x3
)
)
)
(
wral
(
λ x6 .
wral
(
λ x7 .
wral
(
λ x8 .
wral
(
λ x9 .
wa
(
wcel
(
co
(
cv
x9
)
(
cv
x8
)
(
co
(
cop
(
cv
x5
)
(
cv
x6
)
)
(
cv
x7
)
(
cv
x4
)
)
)
(
co
(
cv
x5
)
(
cv
x7
)
(
cv
x3
)
)
)
(
wral
(
λ x10 .
wral
(
λ x11 .
wceq
(
co
(
co
(
cv
x11
)
(
cv
x9
)
(
co
(
cop
(
cv
x6
)
(
cv
x7
)
)
(
cv
x10
)
(
cv
x4
)
)
)
(
cv
x8
)
(
co
(
cop
(
cv
x5
)
(
cv
x6
)
)
(
cv
x10
)
(
cv
x4
)
)
)
(
co
(
cv
x11
)
(
co
(
cv
x9
)
(
cv
x8
)
(
co
(
cop
(
cv
x5
)
(
cv
x6
)
)
(
cv
x7
)
(
cv
x4
)
)
)
(
co
(
cop
(
cv
x5
)
(
cv
x7
)
)
(
cv
x10
)
(
cv
x4
)
)
)
)
(
λ x11 .
co
(
cv
x7
)
(
cv
x10
)
(
cv
x3
)
)
)
(
λ x10 .
cv
x2
)
)
)
(
λ x9 .
co
(
cv
x6
)
(
cv
x7
)
(
cv
x3
)
)
)
(
λ x8 .
co
(
cv
x5
)
(
cv
x6
)
(
cv
x3
)
)
)
(
λ x7 .
cv
x2
)
)
(
λ x6 .
cv
x2
)
)
)
(
λ x5 .
cv
x2
)
)
(
cfv
(
cv
x1
)
cco
)
)
(
cfv
(
cv
x1
)
chom
)
)
(
cfv
(
cv
x1
)
cbs
)
)
)
⟶
wceq
ccid
(
cmpt
(
λ x1 .
ccat
)
(
λ x1 .
csb
(
cfv
(
cv
x1
)
cbs
)
(
λ x2 .
csb
(
cfv
(
cv
x1
)
chom
)
(
λ x3 .
csb
(
cfv
(
cv
x1
)
cco
)
(
λ x4 .
cmpt
(
λ x5 .
cv
x2
)
(
λ x5 .
crio
(
λ x6 .
wral
(
λ x7 .
wa
(
wral
(
λ x8 .
wceq
(
co
(
cv
x6
)
(
cv
x8
)
(
co
(
cop
(
cv
x7
)
(
cv
x5
)
)
(
cv
x5
)
(
cv
x4
)
)
)
(
cv
x8
)
)
(
λ x8 .
co
(
cv
x7
)
(
cv
x5
)
(
cv
x3
)
)
)
(
wral
(
λ x8 .
wceq
(
co
(
cv
x8
)
(
cv
x6
)
(
co
(
cop
(
cv
x5
)
(
cv
x5
)
)
(
cv
x7
)
(
cv
x4
)
)
)
(
cv
x8
)
)
(
λ x8 .
co
(
cv
x5
)
(
cv
x7
)
(
cv
x3
)
)
)
)
(
λ x7 .
cv
x2
)
)
(
λ x6 .
co
(
cv
x5
)
(
cv
x5
)
(
cv
x3
)
)
)
)
)
)
)
)
⟶
wceq
chomf
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 x3 .
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
chom
)
)
)
)
⟶
wceq
ccomf
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cxp
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 x3 .
cmpt2
(
λ x4 x5 .
co
(
cfv
(
cv
x2
)
c2nd
)
(
cv
x3
)
(
cfv
(
cv
x1
)
chom
)
)
(
λ x4 x5 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
chom
)
)
(
λ x4 x5 .
co
(
cv
x4
)
(
cv
x5
)
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cco
)
)
)
)
)
)
⟶
wceq
coppc
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
co
(
co
(
cv
x1
)
(
cop
(
cfv
cnx
chom
)
(
ctpos
(
cfv
(
cv
x1
)
chom
)
)
)
csts
)
(
cop
(
cfv
cnx
cco
)
(
cmpt2
(
λ x2 x3 .
cxp
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 x3 .
ctpos
(
co
(
cop
(
cv
x3
)
(
cfv
(
cv
x2
)
c2nd
)
)
(
cfv
(
cv
x2
)
c1st
)
(
cfv
(
cv
x1
)
cco
)
)
)
)
)
csts
)
)
⟶
wceq
cmon
(
cmpt
(
λ x1 .
ccat
)
(
λ x1 .
csb
(
cfv
(
cv
x1
)
cbs
)
(
λ x2 .
csb
(
cfv
(
cv
x1
)
chom
)
(
λ x3 .
cmpt2
(
λ x4 x5 .
cv
x2
)
(
λ x4 x5 .
cv
x2
)
(
λ x4 x5 .
crab
(
λ x6 .
wral
(
λ x7 .
wfun
(
ccnv
(
cmpt
(
λ x8 .
co
(
cv
x7
)
(
cv
x4
)
(
cv
x3
)
)
(
λ x8 .
co
(
cv
x6
)
(
cv
x8
)
(
co
(
cop
(
cv
x7
)
(
cv
x4
)
)
(
cv
x5
)
(
cfv
(
cv
x1
)
cco
)
)
)
)
)
)
(
λ x7 .
cv
x2
)
)
(
λ x6 .
co
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
)
)
)
)
)
⟶
wceq
cepi
(
cmpt
(
λ x1 .
ccat
)
(
λ x1 .
ctpos
(
cfv
(
cfv
(
cv
x1
)
coppc
)
cmon
)
)
)
⟶
wceq
csect
(
cmpt
(
λ x1 .
ccat
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 x3 .
copab
(
λ x4 x5 .
wsbc
(
λ x6 .
wa
(
wa
(
wcel
(
cv
x4
)
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x6
)
)
)
(
wcel
(
cv
x5
)
(
co
(
cv
x3
)
(
cv
x2
)
(
cv
x6
)
)
)
)
(
wceq
(
co
(
cv
x5
)
(
cv
x4
)
(
co
(
cop
(
cv
x2
)
(
cv
x3
)
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cco
)
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ccid
)
)
)
)
(
cfv
(
cv
x1
)
chom
)
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_ordt
:
wceq
cordt
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cfv
(
cfv
(
cun
(
csn
(
cdm
(
cv
x0
)
)
)
(
crn
(
cun
(
cmpt
(
λ x1 .
cdm
(
cv
x0
)
)
(
λ x1 .
crab
(
λ x2 .
wn
(
wbr
(
cv
x2
)
(
cv
x1
)
(
cv
x0
)
)
)
(
λ x2 .
cdm
(
cv
x0
)
)
)
)
(
cmpt
(
λ x1 .
cdm
(
cv
x0
)
)
(
λ x1 .
crab
(
λ x2 .
wn
(
wbr
(
cv
x1
)
(
cv
x2
)
(
cv
x0
)
)
)
(
λ x2 .
cdm
(
cv
x0
)
)
)
)
)
)
)
cfi
)
ctg
)
)
(proof)
Theorem
df_xrs
:
wceq
cxrs
(
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
cxr
)
(
cop
(
cfv
cnx
cplusg
)
cxad
)
(
cop
(
cfv
cnx
cmulr
)
cxmu
)
)
(
ctp
(
cop
(
cfv
cnx
cts
)
(
cfv
cle
cordt
)
)
(
cop
(
cfv
cnx
cple
)
cle
)
(
cop
(
cfv
cnx
cds
)
(
cmpt2
(
λ x0 x1 .
cxr
)
(
λ x0 x1 .
cxr
)
(
λ x0 x1 .
cif
(
wbr
(
cv
x0
)
(
cv
x1
)
cle
)
(
co
(
cv
x1
)
(
cxne
(
cv
x0
)
)
cxad
)
(
co
(
cv
x0
)
(
cxne
(
cv
x1
)
)
cxad
)
)
)
)
)
)
(proof)
Theorem
df_qtop
:
wceq
cqtop
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
crab
(
λ x2 .
wcel
(
cin
(
cima
(
ccnv
(
cv
x1
)
)
(
cv
x2
)
)
(
cuni
(
cv
x0
)
)
)
(
cv
x0
)
)
(
λ x2 .
cpw
(
cima
(
cv
x1
)
(
cuni
(
cv
x0
)
)
)
)
)
)
(proof)
Theorem
df_imas
:
wceq
cimas
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
csb
(
cfv
(
cv
x1
)
cbs
)
(
λ x2 .
cun
(
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
crn
(
cv
x0
)
)
)
(
cop
(
cfv
cnx
cplusg
)
(
ciun
(
λ x3 .
cv
x2
)
(
λ x3 .
ciun
(
λ x4 .
cv
x2
)
(
λ x4 .
csn
(
cop
(
cop
(
cfv
(
cv
x3
)
(
cv
x0
)
)
(
cfv
(
cv
x4
)
(
cv
x0
)
)
)
(
cfv
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cv
x0
)
)
)
)
)
)
)
(
cop
(
cfv
cnx
cmulr
)
(
ciun
(
λ x3 .
cv
x2
)
(
λ x3 .
ciun
(
λ x4 .
cv
x2
)
(
λ x4 .
csn
(
cop
(
cop
(
cfv
(
cv
x3
)
(
cv
x0
)
)
(
cfv
(
cv
x4
)
(
cv
x0
)
)
)
(
cfv
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cmulr
)
)
(
cv
x0
)
)
)
)
)
)
)
)
(
ctp
(
cop
(
cfv
cnx
csca
)
(
cfv
(
cv
x1
)
csca
)
)
(
cop
(
cfv
cnx
cvsca
)
(
ciun
(
λ x3 .
cv
x2
)
(
λ x3 .
cmpt2
(
λ x4 x5 .
cfv
(
cfv
(
cv
x1
)
csca
)
cbs
)
(
λ x4 x5 .
csn
(
cfv
(
cv
x3
)
(
cv
x0
)
)
)
(
λ x4 x5 .
cfv
(
co
(
cv
x4
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cvsca
)
)
(
cv
x0
)
)
)
)
)
(
cop
(
cfv
cnx
cip
)
(
ciun
(
λ x3 .
cv
x2
)
(
λ x3 .
ciun
(
λ x4 .
cv
x2
)
(
λ x4 .
csn
(
cop
(
cop
(
cfv
(
cv
x3
)
(
cv
x0
)
)
(
cfv
(
cv
x4
)
(
cv
x0
)
)
)
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cip
)
)
)
)
)
)
)
)
)
(
ctp
(
cop
(
cfv
cnx
cts
)
(
co
(
cfv
(
cv
x1
)
ctopn
)
(
cv
x0
)
cqtop
)
)
(
cop
(
cfv
cnx
cple
)
(
ccom
(
ccom
(
cv
x0
)
(
cfv
(
cv
x1
)
cple
)
)
(
ccnv
(
cv
x0
)
)
)
)
(
cop
(
cfv
cnx
cds
)
(
cmpt2
(
λ x3 x4 .
crn
(
cv
x0
)
)
(
λ x3 x4 .
crn
(
cv
x0
)
)
(
λ x3 x4 .
cinf
(
ciun
(
λ x5 .
cn
)
(
λ x5 .
crn
(
cmpt
(
λ x6 .
crab
(
λ x7 .
w3a
(
wceq
(
cfv
(
cfv
(
cfv
c1
(
cv
x7
)
)
c1st
)
(
cv
x0
)
)
(
cv
x3
)
)
(
wceq
(
cfv
(
cfv
(
cfv
(
cv
x5
)
(
cv
x7
)
)
c2nd
)
(
cv
x0
)
)
(
cv
x4
)
)
(
wral
(
λ x8 .
wceq
(
cfv
(
cfv
(
cfv
(
cv
x8
)
(
cv
x7
)
)
c2nd
)
(
cv
x0
)
)
(
cfv
(
cfv
(
cfv
(
co
(
cv
x8
)
c1
caddc
)
(
cv
x7
)
)
c1st
)
(
cv
x0
)
)
)
(
λ x8 .
co
c1
(
co
(
cv
x5
)
c1
cmin
)
cfz
)
)
)
(
λ x7 .
co
(
cxp
(
cv
x2
)
(
cv
x2
)
)
(
co
c1
(
cv
x5
)
cfz
)
cmap
)
)
(
λ x6 .
co
cxrs
(
ccom
(
cfv
(
cv
x1
)
cds
)
(
cv
x6
)
)
cgsu
)
)
)
)
cxr
clt
)
)
)
)
)
)
)
(proof)
Theorem
df_qus
:
wceq
cqus
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
co
(
cmpt
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
(
λ x2 .
cec
(
cv
x2
)
(
cv
x1
)
)
)
(
cv
x0
)
cimas
)
)
(proof)
Theorem
df_xps
:
wceq
cxps
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
co
(
ccnv
(
cmpt2
(
λ x2 x3 .
cfv
(
cv
x0
)
cbs
)
(
λ x2 x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 x3 .
ccnv
(
co
(
csn
(
cv
x2
)
)
(
csn
(
cv
x3
)
)
ccda
)
)
)
)
(
co
(
cfv
(
cv
x0
)
csca
)
(
ccnv
(
co
(
csn
(
cv
x0
)
)
(
csn
(
cv
x1
)
)
ccda
)
)
cprds
)
cimas
)
)
(proof)
Theorem
df_mre
:
wceq
cmre
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wa
(
wcel
(
cv
x0
)
(
cv
x1
)
)
(
wral
(
λ x2 .
wne
(
cv
x2
)
c0
⟶
wcel
(
cint
(
cv
x2
)
)
(
cv
x1
)
)
(
λ x2 .
cpw
(
cv
x1
)
)
)
)
(
λ x1 .
cpw
(
cpw
(
cv
x0
)
)
)
)
)
(proof)
Theorem
df_mrc
:
wceq
cmrc
(
cmpt
(
λ x0 .
cuni
(
crn
cmre
)
)
(
λ x0 .
cmpt
(
λ x1 .
cpw
(
cuni
(
cv
x0
)
)
)
(
λ x1 .
cint
(
crab
(
λ x2 .
wss
(
cv
x1
)
(
cv
x2
)
)
(
λ x2 .
cv
x0
)
)
)
)
)
(proof)
Theorem
df_mri
:
wceq
cmri
(
cmpt
(
λ x0 .
cuni
(
crn
cmre
)
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wn
(
wcel
(
cv
x2
)
(
cfv
(
cdif
(
cv
x1
)
(
csn
(
cv
x2
)
)
)
(
cfv
(
cv
x0
)
cmrc
)
)
)
)
(
λ x2 .
cv
x1
)
)
(
λ x1 .
cpw
(
cuni
(
cv
x0
)
)
)
)
)
(proof)
Theorem
df_acs
:
wceq
cacs
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wex
(
λ x2 .
wa
(
wf
(
cpw
(
cv
x0
)
)
(
cpw
(
cv
x0
)
)
(
cv
x2
)
)
(
wral
(
λ x3 .
wb
(
wcel
(
cv
x3
)
(
cv
x1
)
)
(
wss
(
cuni
(
cima
(
cv
x2
)
(
cin
(
cpw
(
cv
x3
)
)
cfn
)
)
)
(
cv
x3
)
)
)
(
λ x3 .
cpw
(
cv
x0
)
)
)
)
)
(
λ x1 .
cfv
(
cv
x0
)
cmre
)
)
)
(proof)
Theorem
df_cat
:
wceq
ccat
(
cab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wral
(
λ x4 .
wa
(
wrex
(
λ x5 .
wral
(
λ x6 .
wa
(
wral
(
λ x7 .
wceq
(
co
(
cv
x5
)
(
cv
x7
)
(
co
(
cop
(
cv
x6
)
(
cv
x4
)
)
(
cv
x4
)
(
cv
x3
)
)
)
(
cv
x7
)
)
(
λ x7 .
co
(
cv
x6
)
(
cv
x4
)
(
cv
x2
)
)
)
(
wral
(
λ x7 .
wceq
(
co
(
cv
x7
)
(
cv
x5
)
(
co
(
cop
(
cv
x4
)
(
cv
x4
)
)
(
cv
x6
)
(
cv
x3
)
)
)
(
cv
x7
)
)
(
λ x7 .
co
(
cv
x4
)
(
cv
x6
)
(
cv
x2
)
)
)
)
(
λ x6 .
cv
x1
)
)
(
λ x5 .
co
(
cv
x4
)
(
cv
x4
)
(
cv
x2
)
)
)
(
wral
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wral
(
λ x8 .
wa
(
wcel
(
co
(
cv
x8
)
(
cv
x7
)
(
co
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
cv
x6
)
(
cv
x3
)
)
)
(
co
(
cv
x4
)
(
cv
x6
)
(
cv
x2
)
)
)
(
wral
(
λ x9 .
wral
(
λ x10 .
wceq
(
co
(
co
(
cv
x10
)
(
cv
x8
)
(
co
(
cop
(
cv
x5
)
(
cv
x6
)
)
(
cv
x9
)
(
cv
x3
)
)
)
(
cv
x7
)
(
co
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
cv
x9
)
(
cv
x3
)
)
)
(
co
(
cv
x10
)
(
co
(
cv
x8
)
(
cv
x7
)
(
co
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
cv
x6
)
(
cv
x3
)
)
)
(
co
(
cop
(
cv
x4
)
(
cv
x6
)
)
(
cv
x9
)
(
cv
x3
)
)
)
)
(
λ x10 .
co
(
cv
x6
)
(
cv
x9
)
(
cv
x2
)
)
)
(
λ x9 .
cv
x1
)
)
)
(
λ x8 .
co
(
cv
x5
)
(
cv
x6
)
(
cv
x2
)
)
)
(
λ x7 .
co
(
cv
x4
)
(
cv
x5
)
(
cv
x2
)
)
)
(
λ x6 .
cv
x1
)
)
(
λ x5 .
cv
x1
)
)
)
(
λ x4 .
cv
x1
)
)
(
cfv
(
cv
x0
)
cco
)
)
(
cfv
(
cv
x0
)
chom
)
)
(
cfv
(
cv
x0
)
cbs
)
)
)
(proof)
Theorem
df_cid
:
wceq
ccid
(
cmpt
(
λ x0 .
ccat
)
(
λ x0 .
csb
(
cfv
(
cv
x0
)
cbs
)
(
λ x1 .
csb
(
cfv
(
cv
x0
)
chom
)
(
λ x2 .
csb
(
cfv
(
cv
x0
)
cco
)
(
λ x3 .
cmpt
(
λ x4 .
cv
x1
)
(
λ x4 .
crio
(
λ x5 .
wral
(
λ x6 .
wa
(
wral
(
λ x7 .
wceq
(
co
(
cv
x5
)
(
cv
x7
)
(
co
(
cop
(
cv
x6
)
(
cv
x4
)
)
(
cv
x4
)
(
cv
x3
)
)
)
(
cv
x7
)
)
(
λ x7 .
co
(
cv
x6
)
(
cv
x4
)
(
cv
x2
)
)
)
(
wral
(
λ x7 .
wceq
(
co
(
cv
x7
)
(
cv
x5
)
(
co
(
cop
(
cv
x4
)
(
cv
x4
)
)
(
cv
x6
)
(
cv
x3
)
)
)
(
cv
x7
)
)
(
λ x7 .
co
(
cv
x4
)
(
cv
x6
)
(
cv
x2
)
)
)
)
(
λ x6 .
cv
x1
)
)
(
λ x5 .
co
(
cv
x4
)
(
cv
x4
)
(
cv
x2
)
)
)
)
)
)
)
)
(proof)
Theorem
df_homf
:
wceq
chomf
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 x2 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 x2 .
co
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
chom
)
)
)
)
(proof)
Theorem
df_comf
:
wceq
ccomf
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cxp
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 x2 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 x2 .
cmpt2
(
λ x3 x4 .
co
(
cfv
(
cv
x1
)
c2nd
)
(
cv
x2
)
(
cfv
(
cv
x0
)
chom
)
)
(
λ x3 x4 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
chom
)
)
(
λ x3 x4 .
co
(
cv
x3
)
(
cv
x4
)
(
co
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cco
)
)
)
)
)
)
(proof)
Theorem
df_oppc
:
wceq
coppc
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
co
(
co
(
cv
x0
)
(
cop
(
cfv
cnx
chom
)
(
ctpos
(
cfv
(
cv
x0
)
chom
)
)
)
csts
)
(
cop
(
cfv
cnx
cco
)
(
cmpt2
(
λ x1 x2 .
cxp
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 x2 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 x2 .
ctpos
(
co
(
cop
(
cv
x2
)
(
cfv
(
cv
x1
)
c2nd
)
)
(
cfv
(
cv
x1
)
c1st
)
(
cfv
(
cv
x0
)
cco
)
)
)
)
)
csts
)
)
(proof)
Theorem
df_mon
:
wceq
cmon
(
cmpt
(
λ x0 .
ccat
)
(
λ x0 .
csb
(
cfv
(
cv
x0
)
cbs
)
(
λ x1 .
csb
(
cfv
(
cv
x0
)
chom
)
(
λ x2 .
cmpt2
(
λ x3 x4 .
cv
x1
)
(
λ x3 x4 .
cv
x1
)
(
λ x3 x4 .
crab
(
λ x5 .
wral
(
λ x6 .
wfun
(
ccnv
(
cmpt
(
λ x7 .
co
(
cv
x6
)
(
cv
x3
)
(
cv
x2
)
)
(
λ x7 .
co
(
cv
x5
)
(
cv
x7
)
(
co
(
cop
(
cv
x6
)
(
cv
x3
)
)
(
cv
x4
)
(
cfv
(
cv
x0
)
cco
)
)
)
)
)
)
(
λ x6 .
cv
x1
)
)
(
λ x5 .
co
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
)
)
)
)
)
(proof)
Theorem
df_epi
:
wceq
cepi
(
cmpt
(
λ x0 .
ccat
)
(
λ x0 .
ctpos
(
cfv
(
cfv
(
cv
x0
)
coppc
)
cmon
)
)
)
(proof)
Theorem
df_sect
:
wceq
csect
(
cmpt
(
λ x0 .
ccat
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 x2 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 x2 .
copab
(
λ x3 x4 .
wsbc
(
λ x5 .
wa
(
wa
(
wcel
(
cv
x3
)
(
co
(
cv
x1
)
(
cv
x2
)
(
cv
x5
)
)
)
(
wcel
(
cv
x4
)
(
co
(
cv
x2
)
(
cv
x1
)
(
cv
x5
)
)
)
)
(
wceq
(
co
(
cv
x4
)
(
cv
x3
)
(
co
(
cop
(
cv
x1
)
(
cv
x2
)
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cco
)
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ccid
)
)
)
)
(
cfv
(
cv
x0
)
chom
)
)
)
)
)
(proof)