Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrAUe..
/
52fdd..
PUatt..
/
a4ddb..
vout
PrAUe..
/
055a2..
0.10 bars
TMFop..
/
3259c..
ownership of
a4efa..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXmL..
/
dc7fe..
ownership of
669a9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMU7L..
/
a6cf7..
ownership of
88c24..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJq4..
/
1d42c..
ownership of
26001..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWCN..
/
270c7..
ownership of
84d69..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTiH..
/
ec6b4..
ownership of
23015..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUsQ..
/
d5467..
ownership of
014f7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaM2..
/
16383..
ownership of
57dbc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZXt..
/
f0eda..
ownership of
9727e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHc3..
/
952e6..
ownership of
c9772..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTfJ..
/
5bcb4..
ownership of
2b4e2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFrz..
/
1d3c4..
ownership of
c35d8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFeK..
/
ad050..
ownership of
7d554..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRkG..
/
0ad4c..
ownership of
207a6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMa4U..
/
f7e97..
ownership of
ddd80..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMZe..
/
f8cea..
ownership of
4eb1e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVso..
/
1df43..
ownership of
7b98d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRUq..
/
b0a1a..
ownership of
5252a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNEz..
/
15871..
ownership of
a1eba..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcxG..
/
55002..
ownership of
3519e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVQD..
/
1a40b..
ownership of
9a6a0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKqW..
/
c37a0..
ownership of
fb259..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYVX..
/
ba106..
ownership of
c6d3d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcxk..
/
4d506..
ownership of
b56b9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaFZ..
/
0a3ea..
ownership of
2468d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMavi..
/
6e3ed..
ownership of
06040..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFkd..
/
be037..
ownership of
e6b0e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSzq..
/
64112..
ownership of
f444a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYBT..
/
da143..
ownership of
ab277..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJ6G..
/
ccedf..
ownership of
7f013..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJPP..
/
7009a..
ownership of
010c6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMP79..
/
6c201..
ownership of
724f3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMT81..
/
f2ab6..
ownership of
9cf6c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQ1m..
/
52bcb..
ownership of
3c10e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMR4D..
/
7fbbf..
ownership of
74e28..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMR3q..
/
236f3..
ownership of
61406..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUboD..
/
b195c..
doc published by
PrCmT..
Known
df_sslt__df_scut__df_made__df_old__df_new__df_left__df_right__df_txp__df_pprod__df_sset__df_trans__df_bigcup__df_fix__df_limits__df_funs__df_singleton__df_singles__df_image
:
∀ x0 : ο .
(
wceq
csslt
(
copab
(
λ x1 x2 .
w3a
(
wss
(
cv
x1
)
csur
)
(
wss
(
cv
x2
)
csur
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wbr
(
cv
x3
)
(
cv
x4
)
cslt
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cv
x1
)
)
)
)
⟶
wceq
cscut
(
cmpt2
(
λ x1 x2 .
cpw
csur
)
(
λ x1 x2 .
cima
csslt
(
csn
(
cv
x1
)
)
)
(
λ x1 x2 .
crio
(
λ x3 .
wceq
(
cfv
(
cv
x3
)
cbday
)
(
cint
(
cima
cbday
(
crab
(
λ x4 .
wa
(
wbr
(
cv
x1
)
(
csn
(
cv
x4
)
)
csslt
)
(
wbr
(
csn
(
cv
x4
)
)
(
cv
x2
)
csslt
)
)
(
λ x4 .
csur
)
)
)
)
)
(
λ x3 .
crab
(
λ x4 .
wa
(
wbr
(
cv
x1
)
(
csn
(
cv
x4
)
)
csslt
)
(
wbr
(
csn
(
cv
x4
)
)
(
cv
x2
)
csslt
)
)
(
λ x4 .
csur
)
)
)
)
⟶
wceq
cmade
(
crecs
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cima
cscut
(
cxp
(
cpw
(
cuni
(
crn
(
cv
x1
)
)
)
)
(
cpw
(
cuni
(
crn
(
cv
x1
)
)
)
)
)
)
)
)
⟶
wceq
cold
(
cmpt
(
λ x1 .
con0
)
(
λ x1 .
cuni
(
cima
cmade
(
cv
x1
)
)
)
)
⟶
wceq
cnew
(
cmpt
(
λ x1 .
con0
)
(
λ x1 .
cdif
(
cfv
(
cv
x1
)
cold
)
(
cfv
(
cv
x1
)
cmade
)
)
)
⟶
wceq
cleft
(
cmpt
(
λ x1 .
csur
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wa
(
wbr
(
cv
x2
)
(
cv
x3
)
cslt
)
(
wbr
(
cv
x3
)
(
cv
x1
)
cslt
)
⟶
wcel
(
cfv
(
cv
x2
)
cbday
)
(
cfv
(
cv
x3
)
cbday
)
)
(
λ x3 .
csur
)
)
(
λ x2 .
cfv
(
cfv
(
cv
x1
)
cbday
)
cold
)
)
)
⟶
wceq
cright
(
cmpt
(
λ x1 .
csur
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wa
(
wbr
(
cv
x1
)
(
cv
x3
)
cslt
)
(
wbr
(
cv
x3
)
(
cv
x2
)
cslt
)
⟶
wcel
(
cfv
(
cv
x2
)
cbday
)
(
cfv
(
cv
x3
)
cbday
)
)
(
λ x3 .
csur
)
)
(
λ x2 .
cfv
(
cfv
(
cv
x1
)
cbday
)
cold
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
ctxp
x1
x2
)
(
cin
(
ccom
(
ccnv
(
cres
c1st
(
cxp
cvv
cvv
)
)
)
x1
)
(
ccom
(
ccnv
(
cres
c2nd
(
cxp
cvv
cvv
)
)
)
x2
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
cpprod
x1
x2
)
(
ctxp
(
ccom
x1
(
cres
c1st
(
cxp
cvv
cvv
)
)
)
(
ccom
x2
(
cres
c2nd
(
cxp
cvv
cvv
)
)
)
)
)
⟶
wceq
csset
(
cdif
(
cxp
cvv
cvv
)
(
crn
(
ctxp
cep
(
cdif
cvv
cep
)
)
)
)
⟶
wceq
ctrans
(
cdif
cvv
(
crn
(
cdif
(
ccom
cep
cep
)
cep
)
)
)
⟶
wceq
cbigcup
(
cdif
(
cxp
cvv
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
ccom
cep
cep
)
cvv
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
cfix
x1
)
(
cdm
(
cin
x1
cid
)
)
)
⟶
wceq
climits
(
cdif
(
cin
con0
(
cfix
cbigcup
)
)
(
csn
c0
)
)
⟶
wceq
cfuns
(
cdif
(
cpw
(
cxp
cvv
cvv
)
)
(
cfix
(
ccom
cep
(
ccom
(
ctxp
c1st
(
ccom
(
cdif
cvv
cid
)
c2nd
)
)
(
ccnv
cep
)
)
)
)
)
⟶
wceq
csingle
(
cdif
(
cxp
cvv
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
cid
cvv
)
)
)
)
⟶
wceq
csingles
(
crn
csingle
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
cimage
x1
)
(
cdif
(
cxp
cvv
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
ccom
cep
(
ccnv
x1
)
)
cvv
)
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_sslt
:
wceq
csslt
(
copab
(
λ x0 x1 .
w3a
(
wss
(
cv
x0
)
csur
)
(
wss
(
cv
x1
)
csur
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wbr
(
cv
x2
)
(
cv
x3
)
cslt
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cv
x0
)
)
)
)
(proof)
Theorem
df_scut
:
wceq
cscut
(
cmpt2
(
λ x0 x1 .
cpw
csur
)
(
λ x0 x1 .
cima
csslt
(
csn
(
cv
x0
)
)
)
(
λ x0 x1 .
crio
(
λ x2 .
wceq
(
cfv
(
cv
x2
)
cbday
)
(
cint
(
cima
cbday
(
crab
(
λ x3 .
wa
(
wbr
(
cv
x0
)
(
csn
(
cv
x3
)
)
csslt
)
(
wbr
(
csn
(
cv
x3
)
)
(
cv
x1
)
csslt
)
)
(
λ x3 .
csur
)
)
)
)
)
(
λ x2 .
crab
(
λ x3 .
wa
(
wbr
(
cv
x0
)
(
csn
(
cv
x3
)
)
csslt
)
(
wbr
(
csn
(
cv
x3
)
)
(
cv
x1
)
csslt
)
)
(
λ x3 .
csur
)
)
)
)
(proof)
Theorem
df_made
:
wceq
cmade
(
crecs
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cima
cscut
(
cxp
(
cpw
(
cuni
(
crn
(
cv
x0
)
)
)
)
(
cpw
(
cuni
(
crn
(
cv
x0
)
)
)
)
)
)
)
)
(proof)
Theorem
df_old
:
wceq
cold
(
cmpt
(
λ x0 .
con0
)
(
λ x0 .
cuni
(
cima
cmade
(
cv
x0
)
)
)
)
(proof)
Theorem
df_new
:
wceq
cnew
(
cmpt
(
λ x0 .
con0
)
(
λ x0 .
cdif
(
cfv
(
cv
x0
)
cold
)
(
cfv
(
cv
x0
)
cmade
)
)
)
(proof)
Theorem
df_left
:
wceq
cleft
(
cmpt
(
λ x0 .
csur
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wa
(
wbr
(
cv
x1
)
(
cv
x2
)
cslt
)
(
wbr
(
cv
x2
)
(
cv
x0
)
cslt
)
⟶
wcel
(
cfv
(
cv
x1
)
cbday
)
(
cfv
(
cv
x2
)
cbday
)
)
(
λ x2 .
csur
)
)
(
λ x1 .
cfv
(
cfv
(
cv
x0
)
cbday
)
cold
)
)
)
(proof)
Theorem
df_right
:
wceq
cright
(
cmpt
(
λ x0 .
csur
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wa
(
wbr
(
cv
x0
)
(
cv
x2
)
cslt
)
(
wbr
(
cv
x2
)
(
cv
x1
)
cslt
)
⟶
wcel
(
cfv
(
cv
x1
)
cbday
)
(
cfv
(
cv
x2
)
cbday
)
)
(
λ x2 .
csur
)
)
(
λ x1 .
cfv
(
cfv
(
cv
x0
)
cbday
)
cold
)
)
)
(proof)
Theorem
df_txp
:
∀ x0 x1 :
ι → ο
.
wceq
(
ctxp
x0
x1
)
(
cin
(
ccom
(
ccnv
(
cres
c1st
(
cxp
cvv
cvv
)
)
)
x0
)
(
ccom
(
ccnv
(
cres
c2nd
(
cxp
cvv
cvv
)
)
)
x1
)
)
(proof)
Theorem
df_pprod
:
∀ x0 x1 :
ι → ο
.
wceq
(
cpprod
x0
x1
)
(
ctxp
(
ccom
x0
(
cres
c1st
(
cxp
cvv
cvv
)
)
)
(
ccom
x1
(
cres
c2nd
(
cxp
cvv
cvv
)
)
)
)
(proof)
Theorem
df_sset
:
wceq
csset
(
cdif
(
cxp
cvv
cvv
)
(
crn
(
ctxp
cep
(
cdif
cvv
cep
)
)
)
)
(proof)
Theorem
df_trans
:
wceq
ctrans
(
cdif
cvv
(
crn
(
cdif
(
ccom
cep
cep
)
cep
)
)
)
(proof)
Theorem
df_bigcup
:
wceq
cbigcup
(
cdif
(
cxp
cvv
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
ccom
cep
cep
)
cvv
)
)
)
)
(proof)
Theorem
df_fix
:
∀ x0 :
ι → ο
.
wceq
(
cfix
x0
)
(
cdm
(
cin
x0
cid
)
)
(proof)
Theorem
df_limits
:
wceq
climits
(
cdif
(
cin
con0
(
cfix
cbigcup
)
)
(
csn
c0
)
)
(proof)
Theorem
df_funs
:
wceq
cfuns
(
cdif
(
cpw
(
cxp
cvv
cvv
)
)
(
cfix
(
ccom
cep
(
ccom
(
ctxp
c1st
(
ccom
(
cdif
cvv
cid
)
c2nd
)
)
(
ccnv
cep
)
)
)
)
)
(proof)
Theorem
df_singleton
:
wceq
csingle
(
cdif
(
cxp
cvv
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
cid
cvv
)
)
)
)
(proof)
Theorem
df_singles
:
wceq
csingles
(
crn
csingle
)
(proof)
Theorem
df_image
:
∀ x0 :
ι → ο
.
wceq
(
cimage
x0
)
(
cdif
(
cxp
cvv
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
ccom
cep
(
ccnv
x0
)
)
cvv
)
)
)
)
(proof)